Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằn[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A πR3 B 6πR3 C 4πR3 D 2πR3 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến (0; +∞) B Hàm số đồng biến R C Hàm số nghịch biến R D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường tròn B Đường elip C Đường hypebol D Đường parabol Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ 0; +∞) B S = (−∞; 2) C S = [ -ln3; +∞) D S = (−∞; ln3) Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(20; 15; 7) B C(6; 21; 21) C C(6; −17; 21) D C(8; ; 19) x x Câu Số nghiệm phương trình + 5.3 − = A B C D Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m > B m ≤ C m ≥ D m < Câu Điểm M hình vẽ bên biểu thị cho số phức Khi số phức w = 4z A w = −8 − 12i B w = −8 + 12i C w = + 12i D w = −8 − 12i Câu 10 Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A 384 B −384 C 192 D −192 Câu 11 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a A a B 2a C D 2 2x+3 Câu 12 Tập nghiệm bất phương trình > −1 A (−3; +∞) B (−∞; −3) C ∅ D R Câu 13 Nếu R6 A f (x) = R6 g(x) = −4 B R6 ( f (x) + g(x)) C −6 D −2 − → Câu 14 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 60 B 45 C 30◦ D 90◦ Trang 1/5 Mã đề 001 Câu 15 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 16 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón A S = πa2 B S = πa2 C S = πa2 D S = πa2 4 Câu 17 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 + B −22016 C 21008 D −21008 (1 + i)(2 − i) Câu 18 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D |z| = − 2i (1 − i)(2 + i) + Câu 19 Phần thực số phức z = 2−i + 3i 29 29 11 11 A − B C D − 13 13 13 13 Câu 20 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D 25 1 Câu 21 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −31 B 31 C 17 D −17 Câu 22 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B M(2; −3) C P(−2; 3) D N(2; 3) Câu 23 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −3 B C −7 D Câu 24 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 10i B −3 − 2i C −3 + 2i D 11 + 2i Câu 25 √ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi√đó mơ-đun số phức w = 6z − 25i A 29 B C D 13 Câu 26 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = R B d > R C d = D d < R Câu 27 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln B ln(6a2 ) C lna 3 D ln Câu 28 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x=5+t x = + 2t x = + 2t x = + 2t y = −1 + t y = −1 + 3t y = + 3t y = + 2t D A B C z = −1 + 3t z = −1 + t z = −1 + t z = + 3t R Câu 29 Cho dx = F(x) + C Khẳng định đúng? x 1 A F ′ (x) = lnx B F ′ (x) = C F ′ (x) = − D F ′ (x) = x x x Trang 2/5 Mã đề 001 Câu 30 Cho khối lập phương có cạnh Thể tích khối lập phương cho A B C D Câu 31 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho C πr2 l D πrl A 2πrl B πrl2 3 Câu 32 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường tròn Tâm đường trịn có tọa độ A (−2; 0) B (0; −2) C (0; 2) D (2; 0) Câu 33 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 225 B 105 C 30 D 210 Câu 34 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm P bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm S Câu 35 Cho số phức z thỏa mãn |z| ≤ ĐặtA = A |A| < B |A| ≤ C điểm R D điểm Q 2z − i Mệnh đề sau đúng? + iz C |A| ≥ D |A| > Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu √ thức P = |z1 | + |z √2 | √ √ A P = 34 + B P = 26 C P = D P = + √ Câu 37 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 B < |z| < C |z| < D |z| > A ≤ |z| ≤ 2 2 Câu 38 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 39 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A B 15 C 10 D Câu 40 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B 18 C D Câu 41 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B 13 C D √ 2 Câu 42 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3√ √ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 Câu 43 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (2; −3; 4) −n = (2; 3; −4) −n = (−2; 3; 4) −n = (−2; 3; 1) A → B → C → D → Trang 3/5 Mã đề 001 Câu 44 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = −6 B S = −5 C S = D S = Câu 45 Với a số thực dương tùy ý, log5 (5a) A − log5 a B + log5 a C − log5 a D + log5 a Câu 46 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (1; +∞) B (−1; 0) C (0; 1) D (−∞; 1) Câu 47 Cho hàm số có bảng biến thiên: Khẳng định sau đúng? A Hàm số đạt cực đại B Hàm số đạt cực đại C Hàm số đạt cực đại D Hàm số đạt cực đại √ Câu 48 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = √ a Tam giác SAB nằm mặt phẳng vuông góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB) √ A d = a Câu 49 Biết B d = 2a R3 A f (x)dx = R3 √ C d = a g(x)dx = Khi B R3 D d = a [ f (x) + g(x)]dx C D −2 Câu 50 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A m > B −1 ≤ m ≤ C m < −1 D −1 ≤ m < Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001