1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán thptqg 6 (786)

13 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 154,56 KB

Nội dung

Free LATEX (Đề thi có 9 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiề[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% năm Biết không rút tiền khỏi ngân hàng sau năm, số tiền lãi nhập vào vốn ban đầu Sau năm rút lãi người thu số tiền lãi A 70, 128 triệu đồng B 20, 128 triệu đồng C 3, triệu đồng D 50, triệu đồng Câu Khối đa diện thuộc loại {3; 5} có đỉnh, cạnh, mặt? A 20 đỉnh, 30 cạnh, 12 mặt B 12 đỉnh, 30 cạnh, 20 mặt C 12 đỉnh, 30 cạnh, 12 mặt D 20 đỉnh, 30 cạnh, 20 mặt Câu [3-1212h] Cho hình lập phương ABCD.A0 B0C D0 , gọi E điểm đối xứng với A0 qua A, gọi G la trọng tâm tam giác EA0C Tính tỉ số thể tích k khối tứ diện GA0 B0C với khối lập phương ABCD.A0 B0C D0 1 1 B k = C k = D k = A k = 15 18 Câu Khối đa diện loại {4; 3} có số mặt A B C 10 D 12 Câu Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (II) sai sai Câu !Dãy số sau có giới !n hạn 0? n B A 3 C Câu (I) sai D Câu (III) sai !n C − !n D e Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A − sin 2x B −1 + sin x cos x C + sin 2x D −1 + sin 2x Câu Mỗi đỉnh hình đa diện đỉnh chung A Bốn mặt B Hai mặt C Ba mặt D Năm mặt Câu Cho z1 , z2 hai nghiệm phương trình z2 + 3z + = Tính P = z1 z2 (z1 + z2 ) A P = −21 B P = 10 C P = −10 D P = 21 x−2 x−1 x x+1 Câu 10 [4-1212d] Cho hai hàm số y = + + + y = |x + 1| − x − m (m tham x−1 x x+1 x+2 số thực) có đồ thị (C1 ) (C2 ) Tập hợp tất giá trị m để (C1 ) cắt (C2 ) điểm phân biệt A (−∞; −3] B (−3; +∞) C (−∞; −3) D [−3; +∞) x Câu 11 Tính diện tích hình phẳng giới hạn đường √ y = xe , y = 0, x = 3 C D A B 2 Trang 1/9 Mã đề Câu 12 [4-1242d] Trong tất số phức z thỏa mãn |z − + 2i| = |z + − 4i| Tìm giá trị nhỏ mơđun z √ √ √ √ 13 D B 26 C A 13 13 Câu 13 Ba kích thước hình hộp chữ nhật làm thành cấp số nhân có cơng bội Thể tích hình hộp √ 1728 Khi đó, kích thước hình hộp √ cho B 8, 16, 32 C 6, 12, 24 D 2, 4, A 3, 3, 38 Câu 14 Khối đa diện loại {3; 5} có số đỉnh A 20 B 12 C 30 Câu 15 Tính √ mơ đun số phức z biết (1 + 2i)z = + 4i √4 B |z| = C |z| = A |z| = D √ D |z| = Câu 16 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R A Z Câu 17 Cho hình chóp S ABCD có đáy ABCD hình thoi với AC = 2BD = 2a tam giác S AD vuông cân S√, (S AD) ⊥ (ABCD) Thể√tích khối chóp S ABCD là√ √ a3 a3 a3 a3 B C D A 12 12 Câu 18 Cho hai đường thẳng d d0 cắt Có phép đối xứng qua mặt phẳng biến d thành d0 ? A Có hai B Có vơ số C Khơng có D Có ! ! ! 4x 2016 Câu 19 [3] Cho hàm số f (x) = x +f + ··· + f Tính tổng T = f +2 2017 2017 2017 2016 A T = 2016 B T = 2017 C T = D T = 1008 2017 Câu 20 Khối đa diện có số đỉnh, cạnh, mặt nhất? A Khối tứ diện B Khối bát diện C Khối lập phương D Khối lăng trụ tam giác Câu 21 Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a A lim [ f (x) + g(x)] = a + b B lim = x→+∞ x→+∞ g(x) b C lim [ f (x)g(x)] = ab D lim [ f (x) − g(x)] = a − b x→+∞ x→+∞ Câu 22 Khối đa diện loại {3; 4} có số đỉnh A 10 B −2x2 Câu 23 [2-c] Giá trị lớn hàm số y = xe 1 A √ B 2e3 e C D đoạn [1; 2] C e D e3 Câu 24 Một chất điểm chuyển động trục với vận tốc v(t) = 3t2 − 6t(m/s) Tính qng đường chất điểm từ thời điểm t = 0(s) đến thời điểm t = 4(s) A 24 m B 16 m C 12 m D m Trang 2/9 Mã đề Câu 25 Hàm số y = −x3 + 3x − đồng biến khoảng đây? A (−1; 1) B (−∞; 1) C (−∞; −1) D (1; +∞) Câu 26 Khối đa diện loại {3; 5} có tên gọi gì? A Khối tứ diện B Khối 20 mặt D Khối 12 mặt C Khối bát diện Câu 27 Khẳng định sau đúng? A Hình lăng trụ đứng có đáy đa giác hình lăng trụ B Hình lăng trụ có đáy đa giác hình lăng trụ C Hình lăng trụ đứng hình lăng trụ D Hình lăng trụ tứ giác hình lập phương Câu 28 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Chỉ có (II) C Cả hai câu D Cả hai câu sai Câu 29 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% năm Biết không rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào só tiền vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất không thay đổi người khơng rút tiền ra? A 14 năm B 11 năm C 10 năm D 12 năm Câu 30 Phát biểu sau sai? A lim qn = (|q| > 1) C lim un = c (un = c số) = nk D lim = n B lim x2 − 12x + 35 x→5 25 − 5x 2 A −∞ B C +∞ D − 5 Câu 32 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy góc 60◦ Thể tích√khối chóp S ABCD √ √ √ a3 a3 2a3 3 B C D A a 3 Câu 31 Tính lim Câu 33 [1] Cho a số thực dương tùy ý khác Mệnh đề đúng? 1 A log2 a = loga B log2 a = C log2 a = D log2 a = − loga loga log2 a Câu 34 [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép ổn định tháng lĩnh 61.758.000 Hỏi lãi suất ngân hàng tháng bao nhiêu? Biết lãi suất không thay đổi thời gian gửi A 0, 8% B 0, 5% C 0, 6% D 0, 7% Câu 35 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Trang 3/9 Mã đề Câu 36 [1] Tập xác định hàm số y = x +x−2 A D = (−2; 1) B D = [2; 1] C D = R D D = R \ {1; 2} √ Câu 37 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 64 B 63 C Vô số D 62 Câu 38 [1] Giá trị biểu thức log √3 10 1 A − B C D −3 3 Câu 39 Khối đa diện loại {3; 3} có số đỉnh A B C D 2 Câu 40 [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% năm Ơng muốn hồn nợ ngân hàng theo cách: Sau tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp cách tháng, số tiền hoàn nợ lần trả hết tiền nợ sau tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng lần hoàn nợ bao nhiêu? Biết lãi suất ngân hàng không đổi thời gian ơng A hồn nợ (1, 01)3 100.(1, 01)3 triệu B m = triệu A m = (1, 01)3 − 120.(1, 12)3 100.1, 03 C m = triệu D m = triệu (1, 12) − √ Câu 41 Cho khối chóp tam giác S ABC có cạnh đáy a Góc cạnh bên mặt phẳng đáy 300 Thể theo a √ tích khối chóp S ABC3 √ √ √ a a a3 a3 A B C D 18 6 36 Câu 42 Khối đa diện sau có mặt khơng phải tam giác đều? A Bát diện B Tứ diện C Nhị thập diện D Thập nhị diện t , với m tham số thực Gọi S tập tất giá trị m cho Câu 43 [4] Xét hàm số f (t) = t + m2 f (x) + f (y) = 1, với số thực x, y thỏa mãn e x+y ≤ e(x + y) Tìm số phần tử S A B Vô số C D Câu 44 Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A f (x) có giới hạn hữu hạn x → a B lim+ f (x) = lim− f (x) = a x→a x→a C lim+ f (x) = lim− f (x) = +∞ D lim f (x) = f (a) x→a x→a x→a Z Câu 45 Cho xe2x dx = ae2 + b, a, b số hữu tỷ Tính a + b 1 A B C D Câu 46 Cho lăng trụ ABC.A0 B0C có cạnh đáy a Cạnh bên 2a Thể tích khối lăng trụ ABC.A0 B0C √ √ 3 a 3 a a A a3 B C D Câu 47 Cho hình chữ nhật ABCD, cạnh AB = 4, AD = Gọi M, N trung điểm cạnh AB CD Cho hình chữ nhật quay quanh MN ta hình trụ trịn xoay tích A 16π B V = 4π C 32π D 8π Câu 48 [2-c] Cho a = log27 5, b = log8 7, c = log2 Khi log12 35 3b + 3ac 3b + 2ac 3b + 2ac A B C c+1 c+2 c+3 D 3b + 3ac c+2 Trang 4/9 Mã đề Câu 49 [2D1-3] Tìm giá trị tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − đồng biến khoảng có độ dài lớn 5 A m > − B m ≤ C − < m < D m ≥ 4 Câu 50 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 4) B (2; 4; 3) C (1; 3; 2) D (2; 4; 6) Câu 51 Khối đa diện thuộc loại {4; 3} có đỉnh, cạnh, mặt? A đỉnh, 12 cạnh, mặt B đỉnh, 12 cạnh, mặt C đỉnh, 12 cạnh, mặt D đỉnh, 12 cạnh, mặt Câu 52 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C D u(x) Câu 53 Khối đa diện loại {3; 4} có tên gọi gì? A Khối 12 mặt B Khối lập phương C Khối tứ diện D Khối bát diện Câu 54 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 55 Hình lăng trụ tam giác có mặt phẳng đối xứng? A mặt B mặt C mặt √3 Câu 56 [1-c] Cho a số thực dương Giá trị biểu thức a : a2 A a B a C a D mặt D a Câu 57 [4] Cho lăng trụ ABC.A0 B0C có chiều cao đáy tam giác cạnh Gọi M, N P tâm mặt bên ABB0 A0 , ACC A0 , BCC B0 Thể tích khối đa diện lồi có đỉnh A, B, C, M, √ N, P √ √ √ 20 14 A C D B 3 3a Câu 58 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 Câu 59 Nếu hình chóp có chiều cao cạnh đáy tăng lên n lần thể tích tăng lên? A 2n3 lần B n3 lần C 2n2 lần D n3 lần Câu 60 Khối đa diện loại {5; 3} có tên gọi gì? A Khối 20 mặt B Khối 12 mặt C Khối bát diện D Khối tứ diện Câu 61 Khối đa diện thuộc loại {3; 3} có đỉnh, cạnh, mặt? A đỉnh, cạnh, mặt B đỉnh, cạnh, mặt C đỉnh, cạnh, mặt D đỉnh, cạnh, mặt Trang 5/9 Mã đề Câu 62 [2] Cho hàm số f (x) = ln(x4 + 1) Giá trị f (1) ln A B C 2 Câu 63 Khối đa diện loại {5; 3} có số mặt A 20 B 12 C Câu 64 Nhị thập diện (20 mặt đều) thuộc loại A {3; 5} B {4; 3} C {3; 4} Câu 65 Hàm số y = A x = x2 − 3x + đạt cực đại x−2 B x = C x = D D 30 D {5; 3} D x = Câu 66 Cho hàm số y = |3 cos x − sin x + 8| với x ∈ [0; 2π] Gọi M, m giá trị lớn nhất, giá trị nhỏ √ √ hàm số Khi tổng √M + m A B C 16 D Câu 67 Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) (S AC) vng góc với (S BC) √ √ √ √ Thể tích khối chóp S 3.ABC a a3 a3 a B C D A 12 12 x+3 Câu 68 [2D1-3] Có giá trị nguyên tham số m để hàm số y = nghịch biến khoảng x−m (0; +∞)? A B C D Vô số Câu 69 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 5a 8a a 2a A B C D 9 9 x−1 Câu 70 [3-1214d] Cho hàm số y = có đồ thị (C) Gọi I giao điểm hai tiệm cận (C) Xét x+2 tam giác ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB √ √ có độ dài A B C D 2 Câu 71 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m > C m < D m ≤ Câu 72 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = a < lim = > với n lim = −∞ ! un = a > lim = lim = +∞ = +∞ lim = a > lim(un ) = +∞ ! un = a , lim = ±∞ lim = Câu 73 Khối đa diện loại {3; 3} có số cạnh A B C D Câu 74 Hàm số sau khơng có cực trị x−2 A y = x4 − 2x + B y = 2x + 1 C y = x + x D y = x3 − 3x Trang 6/9 Mã đề Câu 75 Tổng diện tích mặt khối lập phương 54cm2 Thể tích khối lập phương là: A 46cm3 B 72cm3 C 64cm3 D 27cm3 − 2n Câu 76 [1] Tính lim bằng? 3n + 1 2 A B C − D 3 3 Câu 77 Hàm số y = x − 3x + 3x − có cực trị? A B C D Câu 78 Tìm tất khoảng đồng biến hàm số y = x3 − 2x2 + 3x − A (1; 3) B (1; +∞) C (−∞; 1) (3; +∞) D (−∞; 3) 4x + Câu 79 [1] Tính lim bằng? x→−∞ x + A B C −4 D −1 Câu 80 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B C a D A 2 Câu 81 Cho hình chóp S ABC có đáy ABC tam giác vng cân B với AC = a, biết S A ⊥ (ABC) S B hợp √ với đáy góc 60◦ Thể √ tích khối chóp S ABC √ √ 3 a a a3 a3 A B C D 48 24 24 q Câu 82 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [0; 1] C m ∈ [−1; 0] D m ∈ [0; 2] Câu 83 [2] Cho hàm số f (x) = x ln2 x Giá trị f (e) B 2e C 2e + D A e Câu 84 Tìm giá trị tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + nghịch biến khoảng (−∞; +∞) A [1; +∞) B [−1; 3] C [−3; 1] D (−∞; −3] d = 90◦ , ABC d = 30◦ ; S BC tam giác cạnh a (S AB) ⊥ (ABC) Câu 85 Cho hình chóp S ABC có BAC Thể tích√khối chóp S ABC √ √ 3 √ a3 a a A B 2a2 C D 12 24 24 Câu 86 [2] Đạo hàm hàm số y = x ln x A y0 = ln x − B y0 = − ln x C y0 = + ln x D y0 = x + ln x a Câu 87 [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = + , với a, b ∈ Z Giá trị a + b b ln A B C D log(mx) Câu 88 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m ≤ B m < ∨ m = C m < D m < ∨ m > Câu 89 Khối đa diện thuộc loại {5; 3} có đỉnh, cạnh, mặt? A 20 đỉnh, 30 cạnh, 20 mặt B 20 đỉnh, 30 cạnh, 12 mặt C 12 đỉnh, 30 cạnh, 12 mặt D 12 đỉnh, 30 cạnh, 20 mặt Trang 7/9 Mã đề Câu 90 [2-c] Gọi M, m giá trị lớn giá trị nhỏ hàm số y = x + ln x đoạn [1; e] Giá trị T = M + m 2 C T = + D T = e + A T = e + B T = e + e e Câu 91 Tìm m để hàm số y = mx3 + 3x2 + 12x + đạt cực đại x = A m = −2 B m = C m = −1 D m = −3 0 0 Câu 92.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 93 [2] Cho hàm số y = ln(2x + 1) Tìm m để y0 (e) = 2m + 1 + 2e + 2e − 2e − 2e A m = B m = C m = D m = 4e + − 2e 4e + − 2e x−2 Câu 94 Tính lim x→+∞ x + B C D −3 A − Câu 95 Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B C D Câu 96 Cho hình chóp S ABC có đáy ABC tam giác cạnh a, biết S A ⊥ (ABC) (S BC) hợp với đáy (ABC) góc 60◦ Thể tích khối chóp S ABC √ √ √ a3 a3 a3 a3 A B C D 12 x2 Câu 97 Gọi M, m giá trị lớn giá trị nhỏ hàm số y = x đoạn [−1; 1] Khi e 1 C M = , m = D M = e, m = A M = e, m = B M = e, m = e e Câu 98 [2-c] Giá trị lớn M giá trị nhỏ m hàm số y = x2 − ln x [e−1 ; e] A M = e−2 + 2; m = B M = e−2 + 1; m = C M = e2 − 2; m = e−2 + D M = e−2 − 2; m = Câu 99 Khối chóp ngũ giác có số cạnh A 12 cạnh B cạnh C 11 cạnh Câu 100 Hàm số y = −x3 + 3x2 − đồng biến khoảng đây? A (0; 2) B R C (−∞; 1) D 10 cạnh D (2; +∞) [ = 60◦ , S O Câu 101 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S √ BC) √ 2a 57 a 57 a 57 A B C D a 57 19 19 17 Câu 102 Các khẳng định Z sau sai? Z A Z C Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C B f (x)dx = F(x) +C ⇒ !0 Z Z k f (x)dx = k f (x)dx, k số D f (x)dx = f (x) Z f (u)dx = F(u) +C Câu 103 Cho hình √ chóp S ABCD có đáy ABCD hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD),√S D = a Thể tích khối √ chóp S ABCD √ 3 √ a a 15 a3 A B C a D 3 Trang 8/9 Mã đề Câu 104 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, tam giác S AB đều, H trung điểm cạnh AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S ABCD √ 3 2a 4a a3 a B C D A 3 Câu 105 Thể tích khối lăng √ trụ tam giác có cạnh√bằng là: √ 3 3 A B C D 4 12 Câu 106 Mặt phẳng (AB0C ) chia khối lăng trụ ABC.A0 B0C thành khối đa diện nào? A Hai khối chóp tứ giác B Một khối chóp tam giác, khối chóp tứ giác C Hai khối chóp tam giác D Một khối chóp tam giác, khối chóp ngữ giác 2n + Câu 107 Tính giới hạn lim 3n + 2 A B C D Câu 108 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 c a2 + b2 a b2 + c2 abc b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 109 Cho hình chóp S ABCD có đáy ABCD hình vng biết S A ⊥ (ABCD), S C = a S C hợp với đáy một√góc 60◦ Thể tích khối √ √ chóp S ABCD √ 3 a a3 a3 a B C D A 48 24 16 48 Câu 110 [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn tháng, lãi suất 2% quý Sau tháng, người gửi thêm 100 triệu đồng với kỳ hạn lãi suất trước Tổng số tiền người nhận sau năm gửi tiền vào ngân hàng gần kết sau đây? Biết suốt thời gian gửi tiền lãi suất ngân hàng khơng thay đổi người không rút tiền A 212 triệu B 210 triệu C 216 triệu D 220 triệu cos n + sin n Câu 111 Tính lim n2 + A −∞ B +∞ C D 2n − Câu 112 Tính lim 3n + n4 A B C D Câu 113 Cho hình chóp S ABCD có đáy ABCD hình chữ nhật AB = 2a, BC = 4a (S AB) ⊥ (ABCD) Hai mặt bên (S BC) (S AD) cùng√hợp với đáy góc 30◦√ Thể tích khối chóp S ABCD √ √ 3 3 8a 8a a 4a A B C D 9 Câu 114 Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận tháng người phải trả cho ngân hàng triệu đồng trả tháng hết nợ (tháng cuối trả triệu) Hỏi sau tháng người trả hết nợ ngân hàng A 21 B 23 C 22 D 24 Câu 115 [1] Cho a > 0, a , Giá trị biểu thức alog a √ A 25 B C √ D Trang 9/9 Mã đề ! 3n + 2 Câu 116 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 117 Phát biểu sau sai? A lim qn = với |q| > 1 C lim √ = n = với k > nk D lim un = c (Với un = c số) B lim Câu 118 Khi tăng độ dài tất cạnh khối hộp chữ nhật lên gấp ba thể tích khối hộp tương ứng sẽ: A Tăng gấp lần B Tăng gấp 27 lần C Tăng gấp 18 lần D Tăng gấp lần Câu 119 Cho tứ diện ABCD tích 12 G trọng tâm tam giác BCD Tính thể tích V khối chóp A.GBC A V = B V = C V = D V = Câu 120 Hình lập phương có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt Câu 121 Một máy bay hạ cánh sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần với vận tốc v(t) = − t + 69(m/s), t khoảng thời gian tính giây Hỏi giây cuối trước dừng hẳn, máy bay di chuyển mét? A 387 m B 1587 m C 27 m D 25 m Câu 122 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ Câu 123 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ a a 2a B C D A a 3 Câu 124 [3-1213h] Hình hộp chữ nhật khơng có nắp tích 3200 cm3 , tỷ số chiều cao chiều rộng Khi tổng mặt hình nhỏ nhất, tính diện tích mặt đáy hình hộp A 160 cm2 B 120 cm2 C 1200 cm2 D 160 cm2 [ = 60◦ , S A ⊥ (ABCD) Câu 125 Cho hình chóp S ABCD có đáy ABCD hình thoi cạnh a góc BAD Biết rằng√ khoảng cách từ A đến cạnh √ √ S C a Thể tích khối chóp S ABCD 3 √ a a3 a A B C a D 12 d = 300 Câu 126 Cho khối lăng trụ đứng ABC.A0 B0C có đáy ABC tam giác vng A BC = 2a, ABC Độ dài cạnh bên CC = 3a Thể tích V √của khối lăng trụ cho √ √ 3a3 a3 A V = 3a3 B V = C V = D V = 6a3 2 Câu 127 Khối lập phương có đỉnh, cạnh mặt? A đỉnh, 12 cạnh, mặt B đỉnh, 12 cạnh, mặt C đỉnh, 12 cạnh, mặt D đỉnh, 10 cạnh, mặt Câu 128 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Trang 10/9 Mã đề C G(x) = F(x) − C khoảng (a; b), với C số D Cả ba câu sai Câu 129 Dãy !n số có giới hạn 0? A un = B un = n2 − 4n !n −2 C un = D un = n−1 Câu 130 Tính lim n +2 A B C D n3 − 3n n+1 - - - - - - - - - - HẾT- - - - - - - - - - Trang 11/9 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 B B A B C B D A 10 A 11 A 12 C 13 C C 14 B 15 16 B 17 D 18 A 19 D 20 A 21 22 C 23 24 B 25 A 26 B 27 A 28 C 30 A 32 C 34 D 36 C 38 A 40 C 29 B 31 B 33 B 35 D 37 D 39 D 43 44 D 45 46 C 49 A 51 C 53 D D C 48 D 50 D 52 D 54 55 A 56 57 B 58 59 B 60 61 B 62 63 B 64 A 65 C 41 A B 42 C 66 67 A 69 B C B D B D C 68 A B 70 C 71 A C 73 72 B 74 B 75 D 76 C 77 D 78 C 80 C 79 B 81 D 82 C 83 D 84 C 85 D 86 C 89 88 C 87 B 90 A 91 A 92 C 93 94 95 A D 99 D B C D 98 100 A B 102 103 A B 104 105 B 106 107 B 108 109 D 111 113 C 96 97 101 B C B C 110 A C B 112 C 114 C 115 A 116 B 117 A 118 B B 119 C 120 121 C 122 123 C 124 125 D D 126 C C 127 C 128 129 C 130 A C

Ngày đăng: 07/04/2023, 23:17

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN