Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là sai? (I) F là[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có 10 trang) Thời gian làm bài: 90 phút Mã đề thi Câu Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (I) sai B Câu (II) sai C Khơng có câu D Câu (III) sai sai Câu Giá trị cực đại hàm số y = x3 − 3x + A B −1 C D Câu Tập xác định hàm số f (x) = −x3 + 3x2 − A [−1; 2) B (−∞; +∞) C [1; 2] D (1; 2) Câu Tìm m để hàm số y = mx3 + 3x2 + 12x + đạt cực đại x = A m = −2 B m = −3 C m = D m = −1 Câu Trong khẳng định sau, khẳng định sai? A Cả ba đáp án B Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ C F(x) = x nguyên hàm hàm số f (x) = x D F(x) = x2 nguyên hàm hàm số f (x) = 2x Câu Khối đa diện loại {4; 3} có số cạnh A 12 B 30 C 10 D 20 C D +∞ Câu Giá trị lim (3x2 − 2x + 1) x→1 A B Câu Khi tăng ba kích thước khối hộp chữ nhật lên n lần thể thích tăng lên A n3 lần B n2 lần C n lần D 3n3 lần Câu Cho hình chóp S ABC có đáy ABC tam giác vng cân B với AC = a, biết S A ⊥ (ABC) S B hợp √ với đáy góc 60◦ Thể √ tích khối chóp S ABC √ √ 3 a a3 a3 a B C D A 24 24 48 Câu 10 !0 định sau sai? Z Các khẳng Z Z A f (x)dx = f (x) B f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C Z Z Z Z C f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C D k f (x)dx = k f (x)dx, k số Câu 11 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B ≤ m ≤ C < m ≤ D < m ≤ π π Câu 12 Cho hàm số y = sin x − sin3 x Giá trị lớn hàm số khoảng − ; 2 A B C D −1 Trang 1/10 Mã đề Câu 13 [2]√Tìm m để giá trị nhỏ hàm số y = 2x3 + (m2 + 1)2 x [0; 1] 2√ B m = ±1 C m = ±3 D m = ± A m = ± Câu 14 Khối đa diện loại {5; 3} có tên gọi gì? A Khối bát diện B Khối tứ diện C Khối 12 mặt D Khối 20 mặt Câu 15 Cho tứ diện ABCD tích 12 G trọng tâm tam giác BCD Tính thể tích V khối chóp A.GBC A V = B V = C V = D V = t , với m tham số thực Gọi S tập tất giá trị m cho Câu 16 [4] Xét hàm số f (t) = t + m2 f (x) + f (y) = 1, với số thực x, y thỏa mãn e x+y ≤ e(x + y) Tìm số phần tử S A Vơ số B C D 2 sin x Câu 17 [3-c] + 2cos x √ √ Giá trị nhỏ và√giá trị lớn hàm số f (x) = A 2 B 2 C D Câu 18 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a C D A a B 2 Câu 19 Phần thực phần ảo số phức z = −i + A Phần thực −1, phần ảo B Phần thực 4, phần ảo −1 C Phần thực −1, phần ảo −4 D Phần thực 4, phần ảo √ √ − 3m + = có nghiệm 3 C < m ≤ D ≤ m ≤ 4 log(mx) = có nghiệm thực Câu 21 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m ≤ B m < ∨ m = C m < ∨ m > D m < [ = 60◦ , S O Câu 22 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ A đến (S √ BC) √ 2a 57 a 57 a 57 A B C D a 57 19 17 19 Câu 23 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Z u0 (x) dx = log |u(x)| + C B u(x) C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 20 [12215d] Tìm m để phương trình x+ A m ≥ B ≤ m ≤ 1−x2 Câu 24 Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B − 4.2 x+ 1−x2 C D d = 60◦ Đường chéo Câu 25 Cho lăng trụ đứng ABC.A0 B0C có đáy tam giác vuông A, AC = a, ACB BC mặt bên (BCC B0 ) tạo với mặt phẳng (AA0C 0C) góc 30◦ Thể tích khối lăng trụ ABC.A0 B0C √ √ √ √ 2a3 a3 4a3 A B C D a3 3 Câu 26 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m > C m ≤ D m < Trang 2/10 Mã đề Câu 27 [2-c] Giá trị nhỏ hàm số y = (x2 − 2)e2x đoạn [−1; 2] A 2e4 B −2e2 C 2e2 D −e2 Câu 28 Hình chóp tứ giác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt Câu 29 [1-c] Giá trị biểu thức log2 36 − log2 144 A −4 B −2 C D π x Câu 30 [2-c] Giá trị lớn hàm số y = e cos x đoạn 0; √ π3 π4 C e A B e 2 √ π6 D e Câu 31 Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin x cos x B + sin 2x C −1 + sin 2x D − sin 2x Câu 32 Giá trị lim(2x2 − 3x + 1) x→1 A B C Câu 33 Xác định phần ảo số phức z = (2 + 3i)(2 − 3i) A B 13 C D +∞ D Không tồn Câu 34 [2-c] Giá trị lớn hàm số y = ln(x2 + x + 2) đoạn [1; 3] A ln 14 B ln 12 C ln 10 D ln Câu 35 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, tam giác S AB đều, H trung điểm cạnh AB, √biết S H ⊥ (ABCD) Thể √ tích khối chóp S ABCD 3 2a a3 a3 4a B C D A 3 Câu 36 Cho hình chóp S ABCD có đáy ABCD hình vng biết S A ⊥ (ABCD), S C = a S C hợp với đáy một√góc 60◦ Thể tích khối √ chóp S ABCD √ √ 3 a a3 a3 a B C D A 16 48 24 48 2−n Câu 37 Giá trị giới hạn lim n+1 A B −1 C D ! 1 Câu 38 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n D A B +∞ C 2 Câu 39 [2] Số lượng loài vi khuẩn sau t xấp xỉ đẳng thức Qt = Q0 e0,195t , Q0 số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu 5.000 sau giờ, số lượng vi khuẩn đạt 100.000 con? A 20 B 3, 55 C 24 D 15, 36 Câu 40 Cho hình chóp S ABCD có cạnh đáy 2a Mặt bên hình chóp tạo với đáy góc 60◦ Mặt phẳng (P) chứa cạnh AB qua trọng tâm G tam giác S AC cắt S C, S D M, n Thể tích khối √ chóp S ABMN √ √ √ 4a 2a3 5a3 a3 A B C D 3 Câu 41 Cho hình chữ nhật ABCD, cạnh AB = 4, AD = Gọi M, N trung điểm cạnh AB CD Cho hình chữ nhật quay quanh MN ta hình trụ trịn xoay tích A 16π B V = 4π C 32π D 8π Trang 3/10 Mã đề Câu 42 [4-1214h] Cho khối lăng trụ ABC.A0 B0C , khoảng cách từ C đến đường thẳng BB0 2, khoảng √ cách từ A đến đường thẳng BB0 CC √ 3, hình chiếu vng góc A lên mặt phẳng (A0 B0C ) trung điểm M B0C A0 M = Thể tích khối lăng trụ cho √ √ C D A B Câu 43 Biểu diễn hình học số phức z = + 8i điểm điểm sau đây? A A(−4; 8) B A(4; −8) C A(−4; −8)( D A(4; 8) Câu 44.! Dãy số sau có giới! hạn 0? n n 5 A B − 3 !n C Câu 45 Hình lăng trụ tam giác có mặt phẳng đối xứng? A mặt B mặt C mặt !n D e D mặt Câu 46 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B log2 13 C 2020 D 13 Câu 47 Nếu hình chóp có chiều cao cạnh đáy tăng lên n lần thể tích tăng lên? A 2n3 lần B 2n2 lần C n3 lần D n3 lần Câu 48 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% năm Biết không rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào só tiền vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất không thay đổi người khơng rút tiền ra? A 10 năm B 14 năm C 11 năm D 12 năm mx − đạt giá trị lớn [−2; 6] Câu 49 Tìm m để hàm số y = x+m A 45 B 67 C 26 D 34 Z Câu 50 Cho hàm số f (x) liên tục đoạn [0; 1] thỏa mãn f (x) = 6x f (x )− √ Tính f (x)dx 3x + A B C −1 D Câu 51 [4-1242d] Trong tất số phức z thỏa mãn |z − + 2i| = |z + − 4i| Tìm giá trị nhỏ môđun z √ √ √ √ 13 D 26 B 13 C A 13 Câu 52 [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% tháng Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền khơng 110 triệu đồng (cả vốn lẫn lãi), biết thời gian gửi tiền người khơng rút tiền lãi suất không thay đổi? A 18 tháng B 17 tháng C 16 tháng D 15 tháng Câu 53 [2-c] Giá trị nhỏ hàm số y = x2 ln x đoạn [e−1 ; e] 1 B − C − D −e A − e 2e e Câu 54 Hình lập phương có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt √ Câu 55 Cho khối chóp tam giác S ABC có cạnh đáy a Góc cạnh bên mặt phẳng đáy 300 Thể theo a √ tích khối chóp S ABC3 √ √ √ a a a3 a3 A B C D 6 36 18 Trang 4/10 Mã đề ! ! ! 4x 2016 Câu 56 [3] Cho hàm số f (x) = x Tính tổng T = f +f + ··· + f +2 2017 2017 2017 2016 A T = B T = 1008 C T = 2017 D T = 2016 2017 Câu 57 Mặt phẳng (AB0C ) chia khối lăng trụ ABC.A0 B0C thành khối đa diện nào? A Hai khối chóp tứ giác B Một khối chóp tam giác, khối chóp tứ giác C Hai khối chóp tam giác D Một khối chóp tam giác, khối chóp ngữ giác 9x với x ∈ R hai số a, b thỏa mãn a + b = Tính f (a) + f (b) 9x + B −1 C D Câu 58 [2-c] Cho hàm số f (x) = A Câu 59 Tính lim x→1 A x3 − x−1 B +∞ C D −∞ Câu 60 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 1% năm Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau năm người thu (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định thời gian lãi suất khơng đổi người khơng rút tiền ra? A 10 năm B 13 năm C 11 năm D 12 năm Câu 61 Tính lim x→3 A −3 x2 − x−3 B C +∞ D Câu 62 [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% năm Biết không rút tiền khỏi ngân hàng sau năm, số tiền lãi nhập vào vốn ban đầu Sau năm rút lãi người thu số tiền lãi A 70, 128 triệu đồng B 50, triệu đồng C 20, 128 triệu đồng D 3, triệu đồng Câu 63 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có f (x) = F(x) √ √ 4n2 + − n + Câu 64 Tính lim 2n − 3 A B C D +∞ Câu 65 Khối đa diện sau có mặt khơng phải tam giác đều? A Thập nhị diện B Tứ diện C Nhị thập diện D Bát diện Câu 66 Cho hình chóp S ABCD có √ đáy ABCD hình chữ nhật AD = 2a, AB = a Gọi H trung điểm AD, biết √ S H ⊥ (ABCD), S A = √a Thể tích khối chóp3 S ABCD 3 4a 2a 2a 4a3 A B C D 3 3 Câu 67 Khi chiều cao hình chóp tăng lên n lần cạnh đáy giảm n lần thể tích A Khơng thay đổi B Tăng lên n lần C Giảm n lần D Tăng lên (n − 1) lần Trang 5/10 Mã đề Câu 68 Nếu khơng sử dụng thêm điểm khác ngồi đỉnh hình lập phương chia hình lập phương thành A Một tứ diện bốn hình chóp tam giác B Năm tứ diện C Bốn tứ diện hình chóp tam giác D Năm hình chóp tam giác đều, khơng có tứ diện ! 1 Câu 69 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D 2 Câu 70 Khối đa diện loại {3; 5} có tên gọi gì? A Khối bát diện B Khối 20 mặt C Khối tứ diện D Khối 12 mặt Câu 71 Khối đa diện thuộc loại {3; 3} có đỉnh, cạnh, mặt? A đỉnh, cạnh, mặt B đỉnh, cạnh, mặt C đỉnh, cạnh, mặt D đỉnh, cạnh, mặt Câu 72 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ a a C 2a D B a A Câu 73 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD b a2 + c2 abc b2 + c2 c a2 + b2 a b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 74 Khối đa diện loại {3; 4} có số mặt A B 10 C D 12 x − 5x + Câu 75 Tính giới hạn lim x→2 x−2 A −1 B C D Câu 76 là: √ Thể tích khối lăng trụ tam giác có cạnh √ √ 3 3 A B C D 12 4 ln x p Câu 77 Gọi F(x) nguyên hàm hàm y = ln x + mà F(1) = Giá trị F (e) là: x 8 A B C D 9 Câu 78 [3-c] Cho < x < 64 Tìm giá trị lớn f (x) = log42 x + 12 log22 x log2 x A 82 B 96 C 64 D 81 Câu 79 Tổng diện tích mặt khối lập phương 96cm2 Thể tích khối lập phương là: A 91cm3 B 64cm3 C 48cm3 D 84cm3 Câu 80 [2] Cho hàm số y = ln(2x + 1) Tìm m để y0 (e) = 2m + 1 − 2e − 2e + 2e A m = B m = C m = 4e + − 2e − 2e x+2 Câu 81 Tính lim bằng? x→2 x A B C D m = + 2e 4e + D Trang 6/10 Mã đề Câu 82 Nhị thập diện (20 mặt đều) thuộc loại A {4; 3} B {5; 3} C {3; 4} D {3; 5} Câu 83 Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận tháng người phải trả cho ngân hàng triệu đồng trả tháng hết nợ (tháng cuối trả triệu) Hỏi sau tháng người trả hết nợ ngân hàng A 22 B 24 C 21 D 23 Câu 84 Khối đa diện loại {5; 3} có số mặt A 20 B 12 C D 30 + + ··· + n Mệnh đề sau đúng? Câu 85 [3-1132d] Cho dãy số (un ) với un = n2 + A Dãy số un khơng có giới hạn n → +∞ B lim un = C lim un = D lim un = Câu 86 Cho hình chóp S ABCD có đáy ABCD hình thang vng A D; AD = CD = a; AB = 2a; tam giác√S AB nằm mặt Thể tích khối chóp S ABCD √ √ phẳng vng góc với 3(ABCD) 3 √ a a a B C D a3 A x−2 Câu 87 Tính lim x→+∞ x + C −3 D A B − Câu 88 Cho lăng trụ ABC.A0 B0C có cạnh đáy a Cạnh bên 2a Thể tích khối lăng trụ ABC.A0 B0C √ √ a3 a3 a3 A a B C D Câu 89 Tìm tất khoảng đồng biến hàm số y = x3 − 2x2 + 3x − A (1; +∞) B (−∞; 3) C (1; 3) D (−∞; 1) (3; +∞) d = 300 Câu 90 Cho khối lăng trụ đứng ABC.A0 B0C có đáy ABC tam giác vng A BC = 2a, ABC Độ dài cạnh bên CC = 3a Thể tích V √ √ khối lăng trụ cho 3 √ a 3a A V = B V = C V = 3a3 D V = 6a3 2 √ x2 + 3x + Câu 91 Tính giới hạn lim x→−∞ 4x − 1 A B C − D 4 Câu 92 Tìm giá trị tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + nghịch biến khoảng (−∞; +∞) A (−∞; −3] B [1; +∞) C [−3; 1] D [−1; 3] Câu 93 Gọi M, m giá trị lớn nhất, giá trị nhỏ hàm số y = (x2 − 3)e x đoạn [0; 2] Giá trị biểu thức P = (m2 − 4M)2019 A e2016 B 22016 C D d = 90◦ , ABC d = 30◦ ; S BC tam giác cạnh a (S AB) ⊥ (ABC) Câu 94 Cho hình chóp S ABC có BAC Thể tích√khối chóp S ABC √ √ √ a3 a3 a3 A B C 2a D 24 12 24 Trang 7/10 Mã đề [ = 60◦ , S A ⊥ (ABCD) Câu 95 Cho hình chóp S ABCD có đáy ABCD hình thoi cạnh a góc BAD Biết rằng√ khoảng cách từ A đến cạnh √ √ S C a Thể tích khối chóp S ABCD 3 √ a a a3 A B C a D 12 log 2x Câu 96 [3-1229d] Đạo hàm hàm số y = x2 − log 2x − ln 2x − ln 2x 0 A y0 = B y = C y = D y = x3 x3 ln 10 2x3 ln 10 2x3 ln 10 Câu 97 Hàm số y = 2x3 + 3x2 + nghịch biến khoảng (hoặc khoảng) đây? A (−1; 0) B (−∞; 0) (1; +∞) C (0; 1) D (−∞; −1) (0; +∞) Câu 98 [3-1212h] Cho hình lập phương ABCD.A0 B0C D0 , gọi E điểm đối xứng với A0 qua A, gọi G la trọng tâm tam giác EA0C Tính tỉ số thể tích k khối tứ diện GA0 B0C với khối lập phương ABCD.A0 B0C D0 1 1 A k = B k = C k = D k = 15 18 Câu 99 Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x)g(x)] = ab B lim [ f (x) − g(x)] = a − b x→+∞ x→+∞ f (x) a = D lim [ f (x) + g(x)] = a + b C lim x→+∞ x→+∞ g(x) b Câu 100 [2] Một người gửi 9, triệu đồng với lãi suất 8, 4% năm lãi suất hàng năm nhập vào vốn Hỏi theo cách sau năm người thu tổng số tiền 20 triệu đồng (Biết lãi suất không thay đổi) A năm B năm C 10 năm D năm Câu 101 Một chất điểm chuyển động trục với vận tốc v(t) = 3t2 − 6t(m/s) Tính qng đường chất điểm từ thời điểm t = 0(s) đến thời điểm t = 4(s) A 16 m B 12 m C m D 24 m Câu 102 Khối đa diện loại {4; 3} có số đỉnh A 10 B C D Câu 103 Cho hàm số y = x3 − 2x2 + x + Mệnh đề đúng? A Hàm số nghịch biến khoảng (1; +∞) ! C Hàm số nghịch biến khoảng −∞; ! B Hàm số nghịch biến khoảng ; 3! D Hàm số đồng biến khoảng ; Câu 104 Khối đa diện loại {3; 5} có số cạnh A 12 B 20 C D 30 ln x m đoạn [1; e3 ] M = n , n, m Câu 105 [3] Biết giá trị lớn hàm số y = x e số tự nhiên Tính S = m2 + 2n3 A S = 135 B S = 24 C S = 22 D S = 32 Câu 106 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Trang 8/10 Mã đề Câu 107 Cho a số thực dương α, β số thực Mệnh đề sau sai? α aα A aαβ = (aα )β B β = a β C aα+β = aα aβ D aα bα = (ab)α a Câu 108 Tính lim n+3 A B C D Câu 109 Khối đa diện loại {3; 5} có số mặt A 20 B 12 C D 30 0 0 Câu 110 a Khoảng cách từ C đến √ AC √ ABCD.A B C D cạnh √ √ [2] Cho hình lâp phương a a a a B C D A x Câu 111 [2] √ hàm số y = 2x + (m + 1)2 [0; 1] √ Tìm m để giá trị lớn A m = ± B m = ± C m = ±3 D m = ±1 Câu 112 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m < B m > C m ≥ D m ≤ 4 4 un Câu 113 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B +∞ C −∞ D Câu 114 Khẳng định sau đúng? A Hình lăng trụ tứ giác hình lập phương B Hình lăng trụ có đáy đa giác hình lăng trụ C Hình lăng trụ đứng hình lăng trụ D Hình lăng trụ đứng có đáy đa giác hình lăng trụ Câu 115 Khối chóp ngũ giác có số cạnh A cạnh B 10 cạnh C 11 cạnh D 12 cạnh Câu 116 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vô nghiệm Câu 117 Khối đa diện loại {3; 4} có số đỉnh A B 10 C D Câu 118 [2] Biết M(0; 2), N(2; −2) điểm cực trị đồ thị hàm số y = ax3 + bx2 + cx + d Tính giá trị hàm số x = −2 A y(−2) = 22 B y(−2) = C y(−2) = −18 D y(−2) = Câu 119 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách √ hai đường thẳng BD S C √ √ √ a a a B a C D A Câu 120 Khi tăng độ dài tất cạnh khối hộp chữ nhật lên gấp ba thể tích khối hộp tương ứng sẽ: A Tăng gấp 27 lần B Tăng gấp 18 lần C Tăng gấp lần D Tăng gấp lần Câu 121 Khối đa diện loại {3; 3} có số đỉnh A B C D Câu 122 Bát diện thuộc loại A {3; 3} B {3; 4} C {4; 3} D {5; 3} Trang 9/10 Mã đề Câu 123 [4-1244d] Trong tất số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − + 5i| = |z − i| Biết rằng, |z + − i| nhỏ Tính P = ab 13 23 A B − C D − 100 100 25 16 a Câu 124 [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = + , với a, b ∈ Z Giá trị a + b b ln A B C D Câu 125 Cho hình chóp S ABCD có đáy ABCD hình thoi với AC = 2BD = 2a tam giác S AD vuông cân S√, (S AD) ⊥ (ABCD) Thể√tích khối chóp S ABCD là√ √ a3 a3 a3 a3 A B C D 12 12 log 2x Câu 126 [1229d] Đạo hàm hàm số y = x2 − ln 2x − ln 2x 1 − log 2x A y0 = B y0 = C y0 = D y0 = 2x ln 10 x ln 10 2x ln 10 x3 Câu 127 Cho hình chóp S ABC có đáy ABC tam giác vuông cân A với AB = AC = a, biết tam giác S AB cân S nằm mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) góc 45◦ Thể tích khối chóp S ABC a3 a3 a3 C D A a3 B 12 24 Câu 128 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = − x2 y = x 11 A B C D 2 √ Câu 129 [1] Biết log6 a = log6 a A B 108 C D 36 Câu 130 [2-c] Giá trị lớn hàm số y = x(2 − ln x) đoạn [2; 3] A e B − ln C D −2 + ln - - - - - - - - - - HẾT- - - - - - - - - - Trang 10/10 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 C B A C A A A B C 11 10 B 12 B 13 B 14 15 B 16 17 B 18 A 19 B 20 21 B 22 A 23 B 24 A 25 D 26 A 27 D 29 30 C 31 32 C 33 A 34 A D 37 40 D 42 A 43 D 44 45 C 46 47 C 48 49 D 51 B D B C B B 61 D C B C 52 C 54 C 56 59 A D B 58 D 60 D 62 C 64 A B 66 65 A 67 69 D 50 A C 55 63 B 39 38 A 57 C 35 A 36 53 C D 68 A C B 70 B 71 72 B 73 A 74 A 75 A 76 77 B 78 79 B 80 A 81 D C D 82 C 83 A 84 D B 85 D 86 A 87 D 88 B 89 D 90 B 91 92 C 93 D 94 A 95 D 96 100 A C 103 D 104 107 D 111 112 D 113 114 D 115 116 C 117 A 118 C 119 A 120 A 126 128 D B 109 A B B 124 B 105 B 108 122 C 101 A 102 110 B 99 97 A 106 C D B 130 A D B 121 B 123 B 125 B 127 B 129 A C B