1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán thptqg 2 (276)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 149,74 KB

Nội dung

Free LATEX (Đề thi có 11 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho ∫ 1 0 xe2xdx = ae2 + b, trong đó a, b là các số hữu tỷ Tính a + b A 0 B 1 C 1 4 D 1 2 Câu 2 Khối đa di[.]

Free LATEX BÀI TẬP TỐN THPT (Đề thi có 11 trang) Thời gian làm bài: 90 phút Mã đề thi Z Câu Cho xe2x dx = ae2 + b, a, b số hữu tỷ Tính a + b A B C Câu Khối đa diện loại {5; 3} có số cạnh A 12 B C 30 Câu [2] Cho hàm số f (x) = ln(x4 + 1) Giá trị f (1) ln A B C 2 Câu Xét hai khẳng đinh sau D D 20 D (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai sai x − 3x + đạt cực đại Câu Hàm số y = x−2 A x = B x = x−2 Câu Tính lim x→+∞ x + A B −3 C Chỉ có (II) D Cả hai C x = D x = 2 C − D Câu [2] Cho hàm số f (x) = x ln2 x Giá trị f (e) A 2e + B C D 2e e Câu Cho tứ diện ABCD tích 12 G trọng tâm tam giác BCD Tính thể tích V khối chóp A.GBC A V = B V = C V = D V = log7 16 Câu [1-c] Giá trị biểu thức log7 15 − log7 15 30 A B C −2 D −4 Câu 10 [1] Đạo hàm hàm số y = x A y0 = x B y0 = x ln x ln x Câu 11 [2] Đạo hàm hàm số y = x ln x A y0 = + ln x B y0 = x + ln x ln C y0 = x ln D y0 = C y0 = − ln x D y0 = ln x − Câu 12 Cho hình chóp S ABCD có đáy ABCD hình vuông cạnh 2a, tam giác S AB đều, H trung điểm cạnh AB, √biết S H ⊥ (ABCD) Thể √ tích khối chóp S ABCD 2a3 4a3 a3 a3 A B C D 3 3 Câu 13 [2-c] Giá trị lớn hàm số f (x) = e x −3x+3 đoạn [0; 2] A e5 B e3 C e2 D e Trang 1/11 Mã đề Câu 14 [4-1242d] Trong tất số phức z thỏa mãn |z − + 2i| = |z + − 4i| Tìm giá trị nhỏ môđun z √ √ √ √ 13 C 26 A 13 B D 13 Câu 15 Hình lăng trụ tam giác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt 0 d = 300 Câu 16 Cho khối lăng trụ đứng ABC.A B C có đáy ABC tam giác vuông A BC = 2a, ABC Độ dài cạnh bên CC = 3a Thể tích V khối lăng trụ cho √ √ 3 √ 3a 3 a A V = 3a3 B V = 6a3 C V = D V = 2 log(mx) = có nghiệm thực Câu 17 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m < ∨ m > B m < ∨ m = C m < D m ≤ Câu 18 Tập hợp điểm mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 số ảo A Trục thực B Trục ảo C Hai đường phân giác y = x y = −x góc tọa độ D Đường phân giác góc phần tư thứ Câu 19 Hình hình sau khơng khối đa diện? A Hình lăng trụ B Hình tam giác C Hình lập phương D Hình chóp Câu 20 Cho z1 , z2 hai nghiệm phương trình z + 3z + = Tính P = z1 z2 (z1 + z2 ) A P = 21 B P = −10 C P = 10 D P = −21 Câu 21 Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B C D Câu 22 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (I) sai B Khơng có câu C Câu (II) sai sai Câu 23 Biểu thức sau khơng có nghĩa √ A (−1)−1 B 0−1 C (− 2)0 D Câu (III) sai D √ −1 −3 [ = 60◦ , S O Câu 24 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S√BC) √ √ a 57 2a 57 a 57 A B a 57 C D 17 19 19 Câu 25 ! Z Các khẳng định sau Z sai? Z f (x)dx = f (x) Z Z Z Z C f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C D k f (x)dx = k f (x)dx, k số A f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C B Câu 26 Cho f (x) = sin2 x − cos2 x − x Khi f (x) A − sin 2x B + sin 2x C −1 + sin x cos x D −1 + sin 2x Trang 2/11 Mã đề Câu 27 Khối đa diện loại {3; 4} có số mặt A B C 12 D 10 [ = 60◦ , S A ⊥ (ABCD) Câu 28 Cho hình chóp S ABCD có đáy ABCD hình thoi cạnh a góc BAD Biết khoảng cách từ A đến cạnh √chóp S ABCD √ √ S C a Thể tích khối 3 √ a a a B C D A a3 12 Câu 29 Cho hàm số y = x3 − 3x2 + Tích giá trị cực đại giá trị cực tiểu A B −3 C −6 D Câu 30 Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 + + ··· + n Mệnh đề sau đúng? Câu 31 [3-1132d] Cho dãy số (un ) với un = n2 + A lim un = B lim un = 1 C lim un = D Dãy số un khơng có giới hạn n → +∞ Câu 32 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≤ B m > C m < D m ≥ 1−n Câu 33 [1] Tính lim bằng? 2n + 1 1 A B C − D 2 Câu 34 Cho hình chóp S ABC có đáy ABC tam giác vuông cân A với AB = AC = a, biết tam giác S AB cân S nằm mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) góc 45◦ Thể tích khối chóp S ABC a3 a3 a3 A B C a D 24 12 Câu 35 Khối đa diện loại {5; 3} có số mặt A 30 B 12 C D 20 Câu 36 Ba kích thước hình hộp chữ nhật làm thành cấp số nhân có cơng bội Thể tích hình hộp cho 1728 Khi đó,√các kích √ thước hình hộp A 8, 16, 32 B 3, 3, 38 C 2, 4, D 6, 12, 24 − 2n Câu 37 [1] Tính lim bằng? 3n + 2 A B C D − 3 2x + Câu 38 Tính giới hạn lim x→+∞ x + 1 A B C −1 D 2 Câu 39 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% năm Biết không rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào só tiền vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất không thay đổi người khơng rút tiền ra? A 12 năm B 14 năm C 10 năm D 11 năm Trang 3/11 Mã đề Câu 40 Hình hộp chữ nhật có ba kích thước khác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt Câu 41 [2-c] Cho a = log27 5, b = log8 7, c = log2 Khi log12 35 3b + 3ac 3b + 2ac 3b + 2ac A B C c+1 c+2 c+3 √ Câu 42 [1] Biết log6 a = log6 a A 36 B 108 C D 3b + 3ac c+2 D Câu 43 Tính diện tích hình phẳng giới hạn đường y = xe x , y = 0, x = √ 3 A B C D 2 Câu 44 Phép đối xứng qua mp(P) biến đường thẳng d thành A d nằm P d ⊥ P B d song song với (P) C d ⊥ P D d nằm P Câu 45 Cho hàm số y = −x3 + 3x2 − Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; 2) B Hàm số đồng biến khoảng (0; +∞) C Hàm số nghịch biến khoảng (0; 2) D Hàm số đồng biến khoảng (0; 2) Câu 46 [1] Tập xác định hàm số y = x +x−2 A D = R B D = (−2; 1) C D = R \ {1; 2} D D = [2; 1] Câu 47 Tìm tất khoảng đồng biến hàm số y = x3 − 2x2 + 3x − A (−∞; 1) (3; +∞) B (1; +∞) C (−∞; 3) D (1; 3) t Câu 48 [4] Xét hàm số f (t) = t , với m tham số thực Gọi S tập tất giá trị m cho + m2 f (x) + f (y) = 1, với số thực x, y thỏa mãn e x+y ≤ e(x + y) Tìm số phần tử S A B C Vô số D Câu 49 [1] Cho a > 0, a , Giá trị biểu thức alog a √ A 25 B C D 5 Câu 50 √ [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = Tìm giá trị lớn |z| A B C D √ Câu 51 Khối đa diện loại {3; 3} có số cạnh A B C D Câu 52 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 53 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab 1 ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 2 Câu 54 [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% năm Biết không rút tiền khỏi ngân hàng sau năm, số tiền lãi nhập vào vốn ban đầu Sau năm rút lãi người thu số tiền lãi A 70, 128 triệu đồng B 20, 128 triệu đồng C 3, triệu đồng D 50, triệu đồng √ Câu 55 [12215d] Tìm m để phương trình x+ A ≤ m ≤ B ≤ m ≤ 4 1−x2 √ − 3m + = có nghiệm C < m ≤ D m ≥ − 4.2 x+ 1−x2 Trang 4/11 Mã đề Câu 56 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B C Câu 57 Tìm m để hàm số y = x4 − 2(m + 1)x2 − có cực trị A m > −1 B m ≥ C m > un D −∞ D m > Câu 58 Tổng diện tích mặt khối lập phương 96cm2 Thể tích khối lập phương là: A 91cm3 B 84cm3 C 48cm3 D 64cm3 Câu 59 Dãy !n số sau có giới !n hạn 0? 5 A − B 3 Câu 60 Tính lim x→3 A x2 − x−3 B −3 !n C !n D e C +∞ D Câu 61 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy góc 60◦ Thể tích√khối chóp S ABCD √ √ 3 √ a 2a a 3 C D A a3 B Câu 62 Giá√trị cực đại hàm số y√= x3 − 3x2 − 3x + √ √ A −3 − B + C − D −3 + Câu 63 Cho hình chóp S ABCD có cạnh đáy 2a Mặt bên hình chóp tạo với đáy góc 60◦ Mặt phẳng (P) chứa cạnh AB qua trọng tâm G tam giác S AC cắt S C, S D M, n Thể tích khối √ chóp S ABMN √ √ √ a3 4a3 2a3 5a B C D A 3 d = 120◦ Câu 64 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a D 3a A 2a B 4a C Câu 65 Tìm m để hàm số y = x3 − 3mx2 + 3m2 có điểm cực trị A m > B m = C m < D m , p ln x Câu 66 Gọi F(x) nguyên hàm hàm y = ln2 x + mà F(1) = Giá trị F (e) là: x 1 8 A B C D 9 2n + Câu 67 Tính giới hạn lim 3n + 2 A B C D 2 Câu 68 Cho khối chóp có đáy n−giác Mệnh đề sau đúng? A Số đỉnh khối chóp số cạnh khối chóp B Số cạnh, số đỉnh, số mặt khối chóp C Số đỉnh khối chóp số mặt khối chóp D Số cạnh khối chóp số mặt khối chóp 4x + Câu 69 [1] Tính lim bằng? x→−∞ x + A −4 B −1 C D Trang 5/11 Mã đề 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 9x Câu 71 [2-c] Cho hàm số f (x) = x với x ∈ R hai số a, b thỏa mãn a + b = Tính f (a) + f (b) +3 A B C D −1 Câu 70 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = Câu 72 Cho hai đường thẳng phân biệt d d0 đồng phẳng Có phép đối xứng qua mặt phẳng biến d thành d0 ? A Có hai B Có hai C Có D Khơng có √ Câu 73 Cho chóp S ABCD có đáy ABCD hình vng cạnh a Biết S A ⊥ (ABCD) S A = a Thể tích khối chóp S ABCD √ √ √ a3 a3 a3 B C D a3 A 12 Câu 74 Giá trị cực đại hàm số y = x3 − 3x + A −1 B C D Câu 75 Hàm số y = x3 − 3x2 + đồng biến trên: A (0; 2) B (−∞; 2) C (−∞; 0) (2; +∞) D (0; +∞) !2x−1 !2−x 3 Câu 76 Tập số x thỏa mãn ≤ 5 A [1; +∞) B (+∞; −∞) C (−∞; 1] D [3; +∞) Câu 77 Khẳng định sau đúng? A Hình lăng trụ đứng có đáy đa giác hình lăng trụ B Hình lăng trụ có đáy đa giác hình lăng trụ C Hình lăng trụ đứng hình lăng trụ D Hình lăng trụ tứ giác hình lập phương Câu 78 Tổng diện tích mặt khối lập phương 54cm2 Thể tích khối lập phương là: A 46cm3 B 72cm3 C 64cm3 D 27cm3 x2 Câu 79 Gọi M, m giá trị lớn giá trị nhỏ hàm số y = x đoạn [−1; 1] Khi e 1 A M = e, m = B M = e, m = C M = e, m = D M = , m = e e Câu 80 Nhị thập diện (20 mặt đều) thuộc loại A {4; 3} B {3; 5} C {5; 3} D {3; 4} Câu 81 Khi tăng ba kích thước khối hộp chữ nhật lên n lần thể thích tăng lên A n2 lần B 3n3 lần C n3 lần D n lần Câu 82 Khối đa diện loại {3; 3} có số mặt A B C D √ Câu 83 [2] Thiết diện qua trục hình nón trịn xoay tam giác có diện tích a2 Thể tích khối nón √ √ cho √ √ πa3 πa3 πa3 πa3 A V = B V = C V = D V = 6 Trang 6/11 Mã đề Câu 84 Nếu khơng sử dụng thêm điểm khác ngồi đỉnh hình lập phương chia hình lập phương thành A Năm tứ diện B Một tứ diện bốn hình chóp tam giác C Bốn tứ diện hình chóp tam giác D Năm hình chóp tam giác đều, khơng có tứ diện Câu 85 Cho hình chữ nhật ABCD, cạnh AB = 4, AD = Gọi M, N trung điểm cạnh AB CD Cho hình chữ nhật quay quanh MN ta hình trụ trịn xoay tích A 8π B 16π C 32π D V = 4π Câu 86 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Chỉ có (I) C Cả hai câu D Cả hai câu sai Câu 87 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 88 Tính lim 2n2 − 3n6 + n4 ! 3n + 2 Câu 89 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D a Câu 90 [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = + , với a, b ∈ Z Giá trị a + b b ln A B C D A B C D Câu 91 Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim− f (x) = f (b) B lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b C lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b D lim+ f (x) = f (a) lim− f (x) = f (b) Câu 92 Tập xác định hàm số f (x) = −x3 + 3x2 − A (1; 2) B [−1; 2) C (−∞; +∞) D [1; 2] Câu 93 Giá trị lim(2x2 − 3x + 1) A +∞ x→1 B C D d = 30◦ , biết S BC tam giác Câu 94 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 13 16 Trang 7/11 Mã đề Câu 95 Cho hình chóp S ABCD có đáy ABCD hình thang vng A D; AD = CD = a; AB = 2a; tam giác√S AB nằm mặt Thể tích khối chóp S ABCD √ √ phẳng vng góc với 3(ABCD) 3 √ a a a B C D a3 A 2 Câu 96 [2-c] Giá trị lớn hàm số y = xe−2x đoạn [1; 2] 1 A B √ C e 2e e D e2 Câu 97 Thể tích khối chóp có diện tích đáy S chiều cao h 1 A V = S h B V = 3S h C V = S h D V = S h Câu 98 Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? k f (x)dx = f A Z C f (x)dx, k ∈ R, k , Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx Câu 99 Khối đa diện loại {4; 3} có tên gọi gì? A Khối lập phương B Khối tứ diện f (x)g(x)dx = B Z D f (x)dx g(x)dx Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx C Khối 12 mặt Câu 100 [12213d] Có giá trị nguyên m để phương trình nhất? A B C D Khối bát diện 3|x−1| = 3m − có nghiệm D Câu 101 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = − x2 y = x 11 B C D A 2 Câu 102 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B Vô số C D x+2 bằng? Câu 103 Tính lim x→2 x A B C D Câu 104 √ Tính mơ đun số phức z biết (1 + 2i)z2 = + 4i √ A |z| = B |z| = C |z| = D |z| = √ Câu 105 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ơng ta muốn hồn nợ cho ngân hàng theo cách: Sau tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách tháng, số tiền hoàn nợ tháng ông A trả hết nợ sau năm kể từ ngày vay Biết tháng ngân hàng tính lãi số dư nợ thực tế tháng Hỏi số tiền tháng ông ta cần trả cho ngân hàng gần với số tiền ? A 2, 22 triệu đồng B 3, 03 triệu đồng C 2, 20 triệu đồng D 2, 25 triệu đồng Câu 106 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ b a2 + c2 a b2 + c2 c a2 + b2 abc b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 x−2 x−1 x x+1 Câu 107 [4-1212d] Cho hai hàm số y = + + + y = |x + 1| − x − m (m tham x−1 x x+1 x+2 số thực) có đồ thị (C1 ) (C2 ) Tập hợp tất giá trị m để (C1 ) cắt (C2 ) điểm phân biệt A (−∞; −3) B (−∞; −3] C (−3; +∞) D [−3; +∞) Trang 8/11 Mã đề 2−n Câu 108 Giá trị giới hạn lim n+1 A −1 B C D Câu 109 Tứ diện thuộc loại A {5; 3} B {3; 3} C {3; 4} D {4; 3} Câu 110 Cho khối chóp S ABC √ có đáy ABC tam giác cạnh a Hai mặt bên (S AB) (S AC) vng góc Thể tích khối chóp S ABC √là √ với đáy S C = a 3.3 √ √ a 2a3 a3 a B C D A 12 Câu 111 Tìm giá trị lớn chất hàm số y = x3 − 2x2 − 4x + đoạn [1; 3] 67 A −2 B −4 C D −7 27 Câu 112 Khối đa diện loại {3; 5} có tên gọi gì? A Khối 20 mặt B Khối 12 mặt C Khối bát diện D Khối tứ diện Câu 113 Hàm số y = 2x3 + 3x2 + nghịch biến khoảng (hoặc khoảng) đây? A (−1; 0) B (−∞; −1) (0; +∞) C (−∞; 0) (1; +∞) D (0; 1) Câu 114 Cho hàm số y = x3 − 3x2 − Mệnh đề sau đúng? A Hàm số nghịch biến khoảng (−∞; 0) B Hàm số nghịch biến khoảng (0; 1) C Hàm số đồng biến khoảng (1; 2) D Hàm số nghịch biến khoảng (1; +∞) Câu 115 Trong khẳng định sau, khẳng định sai?Z Z xα+1 α A dx = ln |x| + C, C số B x dx = + C, C số α+1 Z x Z C 0dx = C, C số D dx = x + C, C số Câu 116 Cho hình √ chóp S ABCD có đáy ABCD hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD),√S D = a Thể tích khối chóp S ABCD √ √ √ a3 a3 a3 15 A B a C D 3 Câu 117 Khi chiều cao hình chóp tăng lên n lần cạnh đáy giảm n lần thể tích A Giảm n lần B Tăng lên n lần C Tăng lên (n − 1) lần D Không thay đổi Câu 118 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) có giá trị lớn K B f (x) có giá trị nhỏ K D f (x) xác định K Câu 119 [2-c] Giá trị lớn hàm số y = x(2 − ln x) đoạn [2; 3] A B e C −2 + ln D − ln Câu 120 [1] Giá trị biểu thức log √3 10 1 A − B C D −3 3 Câu 121 Nếu hình chóp có chiều cao cạnh đáy tăng lên n lần thể tích tăng lên? A n3 lần B n3 lần C 2n3 lần D 2n2 lần √ √ Câu 122 Phần thực và√phần ảo số phức √ z = − − 3i lần lượt√l √ A Phần thực 1√− 2, phần ảo −√ B Phần thực √2 − 1, phần ảo −√ C Phần thực 2, phần ảo − D Phần thực − 1, phần ảo Trang 9/11 Mã đề 1 1 Câu 123 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B +∞ C 2 x−3 bằng? Câu 124 [1] Tính lim x→3 x + A +∞ B C −∞ ! D D Câu 125 Một chất điểm chuyển động trục với vận tốc v(t) = 3t2 − 6t(m/s) Tính qng đường chất điểm từ thời điểm t = 0(s) đến thời điểm t = 4(s) A 24 m B 16 m C m D 12 m Câu 126 Cho hình chóp S ABCD có đáy ABCD hình thoi với AC = 2BD = 2a tam giác S AD vng cân S√, (S AD) ⊥ (ABCD) Thể√tích khối chóp S ABCD là√ √ a3 a3 a3 a3 A B C D 12 12 7n2 − 2n3 + Câu 127 Tính lim 3n + 2n2 + A B - C D 3 Câu 128 [2-c] Giá trị lớn hàm số y = ln(x2 + x + 2) đoạn [1; 3] A ln 12 B ln 10 C ln 14 D ln √3 Câu 129 [1] Cho a > 0, a , Giá trị biểu thức loga a 1 A B − C −3 D 3 Câu 130 [2] Số lượng loài vi khuẩn sau t xấp xỉ đẳng thức Qt = Q0 e0,195t , Q0 số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu 5.000 sau giờ, số lượng vi khuẩn đạt 100.000 con? A 20 B 24 C 15, 36 D 3, 55 - - - - - - - - - - HẾT- - - - - - - - - - Trang 10/11 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D C B C C A C A D 10 C 11 A 12 B 13 A 14 B 15 B 16 C 17 B 18 C 19 B 20 21 B 22 23 B 24 27 B 28 29 B 30 31 C 32 33 C 34 35 B 39 D 40 41 D 42 C C B D B D 38 B D 44 A D 46 A 47 A 48 49 A 50 51 A 52 53 A 54 55 A 56 57 A 58 59 D D D 45 C 36 37 43 B 26 C 25 D B D C B C D 60 A C 61 B 62 63 B 64 C 66 C 68 C 65 D 67 A D 69 D 71 C 72 A 73 C 74 75 C 76 A 80 B 81 83 84 B C B 89 90 B 91 92 C 93 94 C 95 D B C B D C B C 99 A 101 A C 102 A 103 A 104 A 105 A 106 D 97 B 100 B 87 88 96 D 82 C 86 98 C 78 77 A 79 C 70 107 B 108 A 109 B 110 A 111 A 112 A 113 A 114 B B 115 B 116 A 117 A 118 A 119 B 120 A 121 B 122 B 123 124 D 126 A 128 C 130 C 125 B 127 B 129 A C

Ngày đăng: 07/04/2023, 22:01

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN