Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001001 Câu 1 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001001 Câu Cho khối chóp S ABC có đáy tam giác vuông cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A 12 B C D Câu Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A B 17 C D 15 Câu Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; 6) B (−6; 7) C (6; 7) D (7; −6) Câu Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A 12 B 11 C D Câu Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox A 16π B 16 C 169 D 16π 15 15 Câu Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C D −1 R4 R4 R4 Câu Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A B C D −1 − → Câu Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 30 B 90 C 60◦ D 45◦ Câu 10 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho đồng biến khoảng (1; 4) B Hàm số cho nghịch biến khoảng (3; +∞) C Hàm số cho nghịch biến khoảng (1; 4) D Hàm số cho đồng biến khoảng (−∞; 3) 1 Câu 11 Cho hàm số f (x) = − x3 + (2m + 3)x2 − (m2 + 3m)x + Có giá trị nguyên 3 tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B C D 16 Câu 12 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A 6a3 B a3 C 6a2 D 2a3 ax + b có đồ thị đường cong hình vẽ bên Tọa độ giao điểm đồ thị Câu 13 Cho hàm số y = cx + d hàm số cho trục hoành A (2 ; 0) B (0 ; −2) C (0 ; 3) D (3; ) Trang 1/4 Mã đề 001001 Câu 14 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A 3a B C D Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) qua tâm mặt cầu (S ) B (P) cắt mặt cầu (S ) C (P) không cắt mặt cầu (S ) D (P) tiếp xúc mặt cầu (S ) x−2 y x−1 = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 5 B (2 ; −3 ; 1) C ( ; − ; ) D ( ; − ; ) A ( ; − ; ) 3 3 3 3 Câu 17 Giả sử có khai triển (1 − 2x)n = a0 + a1 x + a2 x2 + + an xn Tìm a4 biết a0 + a1 + a2 = 31 A −40 B 80 C 40 D −80 → − Câu 18 Trong mặt phẳng cho 2010 điểm phân biệt Hỏi có vectơ khác có điểm đầu điểm cuối lấy từ 2010 điểm cho? A 167541284 B 4039137 C 4038090 D 4167114 Câu 16 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : Câu 19 Trong mặt phẳng toạ độ Oxy, cho ⃗a = (2; −3), ⃗b = (−2; 5) Toạ độ vectơ −⃗a + 3⃗b là: A (−8; 18) B (8; 18) C (−8; −18) D (8; −18) Câu 20 Một đường thẳng có vectơ pháp tuyến? A B C Vô số D Câu 21 Trong mặt phẳng toạ độ Oxy, cho ⃗a = (1; 2), ⃗b = (3; −3) Toạ độ vectơ ⃗c = 3⃗a − 2⃗b là: A (9; 0) B (−3; 12) C (−3; 0) D (3; 12) Câu 22 Có ngựa chạy đua Hỏi có kết xảy ra? Biết khơng có hai ngựa vể đích lúc A 2! B A25 C 5! D C52 Câu 23 Có cách chọn hai học sinh từ nhóm gồm 10 học sinh? A 210 B 102 C A210 D C10 Câu 24 Hệ số x3 khai triển (2x + 1)4 là: A 10 B 32 C D Câu 25 Lớp 10 A có 21 bạn nam 18 bạn nữ Hỏi có cách chọn học sinh làm lớp trưởng? A 158 cách B 29 cách C 168 cách D 39 cách Câu 26 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(6; −17; 21) B C(6; 21; 21) C C(8; ; 19) D C(20; 15; 7) Câu 27 Cho < a , 1; < x , Đẳng thức sau sai? A loga2 x = loga x B loga x2 = 2loga x C aloga x = x D loga (x − 2)2 = 2loga (x − 2) Câu 28 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = B x = + 2ty = + tz = − 4t C x = + 2ty = + tz = D x = + ty = + 2tz = Trang 2/4 Mã đề 001001 Câu 29 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = tan x B y = x3 − 2x2 + 3x + 3x + C y = D y = sin x x−1 Câu 30 Một mặt cầu có diện tích 4πR2 thể tích khối cầu D πR3 A πR3 B 4πR3 C πR3 Câu R31 Kết đúng? A sin2 x cos x = cos2 x sin x + C R sin3 x C sin2 x cos x = − + C Câu R32 Công thức sai? A R cos x = sin x + C C a x = a x ln a + C sin2 x cos x = −cos2 x sin x + C R sin3 x D sin2 x cos x = + C B R R B R e x = e x + C D sin x = − cos x + C √ ′ ′ ′ ′ Câu 33 = 3a Thể tích khối lăng trụ cho là: √ 3Cho lăng trụ ABC.A √ B3C có đáy a, AA A 3a B 3a C a3 D 3a3 Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 D P = |z|2 − A P = (|z| − 2)2 B P = (|z| − 4)2 C P = |z|2 − Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ C D B A √ 2 Câu 36 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i C |w|min = D |w|min = A |w|min = B |w|min = 2 Câu 37 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −22016 B 21008 C 22016 D −21008 Câu 38 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 85 97 A T = 13 B T = C T = D T = 13 3 √ 2 Câu 39 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3√ √ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 Câu 40 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? 5 A < |z| < B < |z| < 2 C < |z| < 2 D + z + z2 số thực − z + z2 < |z| < 2 Trang 3/4 Mã đề 001001 Câu 41 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A 18 B C D Câu 42 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A |z| = B z số thực không dương C Phần thực z số âm D z số ảo Câu 43 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A x = B x = −2 C M(1; −2) D M(−2; −4) Câu 44 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh hình trụ A 6πa2 B 2πa2 C 4πa2 D 5πa2 Câu 45 Tìm nguyên hàm hàm số f (x) = cos 3x R R sin 3x sin 3x A cos 3xdx = + C B cos 3xdx = − + C 3 R R C cos 3xdx = sin 3x + C D cos 3xdx = sin 3x + C Câu 46 Gọi S tập hợp tất giá trị tham số m để bất phương trình log3 (x2 − 5x + m) > log3 (x − 2) có tập nghiệm chứa khoảng (2; +∞) Tìm khẳng định A S = (−∞; 4) B S = [6; +∞) C S = (−∞; 5] D S = (7; +∞) Câu 47 Cần chọn người công tác từ tổ có 30 người, số cách chọn A A330 B 330 C C30 D 10 Câu 48 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị R3 [1 + f (x)]dx 26 32 C D 3 Câu 49 Hình chópS ABC có đáy tam giác vng B có AB = a, AC = 2a, S A vng góc với mặt phẳng√đáy, S A = 2a Gọi φ góc φ =? √ tạo hai mặt phẳng (S AC), (S BC) Tính cos√ 15 B C D A 5 Câu 50 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M cho 3MA2 + 2MB2 − MC đạt giá trị nhỏ 3 3 B M(− ; ; 2) C M(− ; ; −1) D M(− ; ; −1) A M( ; ; −1) 4 4 A 10 B - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001001