Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đ[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho khối lập phương có cạnh Thể tích khối lập phương cho A B C D 83 Câu Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (6; 7) B (−6; 7) C (7; 6) D (7; −6) R Câu Cho x dx = F(x) + C Khẳng định đúng? A F ′ (x) = x22 D F ′ (x) = − x12 B F ′ (x) = ln x C F ′ (x) = 1x = y−2 = Câu Trong không gian Oxyz, cho đường thẳng d : x−1 −1 A Q(1; 2; −3) B N(2; 1; 2) C P(1; 2; 3) z+3 −2 Câu Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = πxπ B y′ = π1 xπ−1 C y′ = xπ−1 Điểm thuộc d? D M(2; −1; −2) D y′ = πxπ−1 Câu Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+ x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A 41 B 12 C 25 D 43 Câu Cho khối lăng trụ đứng ABC · A′ B′C ′ √có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ A 42 a3 B 2a3 D 22 a3 C 62 a3 Câu Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A B C 12 D 11 Câu Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 B P = C P = D P = A P = 14 55 220 Câu 10 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) điểmM(1; 2; 2)thuộc mặt cầu Phương trình (S ) √ A (x − 1)2 + (y − 4)2 + (z + 2)2 = 40 B (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 C (x − 1)2 + (y − 4)2 + (z + 2)2 = 10 D (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 Câu 11 Cho hàm số y = f (x) hàm số bậc có đồ thị hình vẽ Giá trị cực tiểu hàm số cho A −2 B −1 C D − → Câu 12 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − A 45◦ B 60◦ C 90◦ D 30◦ R2 R2 Câu 13 Cho hàm số f (x) liên tục R ( f (x) + 2x) = Tính f (x) A B −1 C −9 D Câu 14 Bất phương trình log2021 (x − 1) ≤ có nghiệm nguyên? A B C D 2022 Trang 1/4 Mã đề 001 Câu 15 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 18 B 12 C 21 D 27 Câu 16 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 22π 7π 512π B V = C V = D V = A V = 15 Câu 17 Phương trình tổng quát đường thẳng ∆ qua điểm M(x0 ; y0 ) có vectơ pháp tuyến ⃗n(a; b) là: x − x0 y − y0 A b(x − x0 ) − a(y − y0 ) = B = a b C a(x − x0 ) + b(y − y0 ) = D a(x + x0 ) + b(y + y0 ) = Câu 18 Cho α góc tạo hai đường thẳng ∆1 : 2x − 3y + = ∆2 : 3x + y − 14 = Giá trị cosa là: √ −3 −3 3 D B √ C A √ 130 130 130 130 → − Câu 19 Trong mặt phẳng cho 2010 điểm phân biệt Hỏi có vectơ khác có điểm đầu điểm cuối lấy từ 2010 điểm cho? A 4167114 B 167541284 C 4039137 D 4038090 Câu 20 Cho tập hợp A = {1; 2; 3; 4; 5; 6; 7} Hỏi có cách lập số có ba chữ số khác từ chữ số thuộc tập hợp A? A A47 B C74 C A37 D C73 Câu 21 Một lớp có 34 học sinh Hỏi có cách chọn 10 học sinh để tham gia hoạt động trồng trường? 10! 34! 10 A B C C34 D A10 34 (34 − 10)! 10! Câu 22 Số cách chia 10 học sinh thành ba nhóm có 2, 3, học sinh là: 2 5 A C10 + C83 + C55 B C10 · C83 · C55 C C10 + C53 + C22 D C10 + C10 + C10 −−→ Câu 23 Trong mặt phẳng toạ độ Oxy, cho A(3; −2) Toạ độ vectơ OA là: A (−2; 3) B (−3; 2) C (2; −3) D (3; −2) −−→ Câu 24 Trong mặt phẳng toạ độ Oxy, cho A(−3; 2), B(5; −1) Toạ độ vectơ AB là: A (8; −3) B (−8; 3) C (−2; −1) D (2; 1) Câu 25 Cho α góc tạo hai đường thẳng ∆1 : 2x − 3y + = ∆2 : 3x + y − 14 = Giá trị cosa là: √ −3 3 −3 B √ C √ D A 130 130 130 130 Câu 26 Tính I = R1 √3 7x + 1dx 45 A I = 28 B I = 60 28 C I = 21 D I = 20 , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π A 3π B √ C D 3π 3 Câu 27 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Trang 2/4 Mã đề 001 Câu 28 Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 100a3 B 60a3 C 30a3 D 20a3 Câu 29 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hoành độ x = là: x x −1+ B y = +1− A y = ln ln 5 ln ln x x + D y = − C y = ln 5 ln ln Câu 30 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = [ -ln3; +∞) C S = (−∞; ln3) D S = [ 0; +∞) Câu 31 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = −2 C m = −15 D m = 13 Câu 32 Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường hypebol B Đường tròn C Đường elip D Đường parabol Câu 33 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 2a 3a 5a a A √ B C D √ 5 z Câu 34 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ C D A B Câu 35 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm P bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm S C điểm R D điểm Q Câu 36 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ B A C D √ 2 √ Câu 37 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P B điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz √ C điểm N D điểm Q Câu 38 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 + ab + bc + ca B a2 + b2 + c2 − ab − bc − ca C a + b + c D Trang 3/4 Mã đề 001 Câu 39 Cho số phức z thỏa mãn z số thực ω = biểu thức M = |z + − i| √ A B 2 C z số thực Giá trị lớn + z2 √ D Câu 40 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ √ 97 85 A T = 13 B T = 13 C T = D T = 3 Câu 41 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i B |z| = C |z| = D |z| = A |z| = + z + z2 Câu 42 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 5 A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 Câu 43 Tìm đạo hàm hàm số: y = (x + 1) 1 1 3 − A (x + 1) B x C 3x(x + 1) D (2x) Câu 44 Cho hàm số y = f (x) có đạo hàm f ′ (x) = x2 − 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến khoảng A (0; 2) B (−2; 0) C (−∞; −2) D (2; +∞) Câu 45 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 B −16 C D A 16 Câu 46 Cho lăng trụ đứng ABC.A′ B′C ′ có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng 600 Biết diện√tích tam giác ∆A′ BC 2a2 Tính thể tích V khối lăng trụ ABC.A′ B′C ′ √ 2a3 a3 B V = C V = a3 D V = 3a3 A V = 3 Câu 47 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm −−→ −−→ −−→ tọa độ điểm M thỏa mãn OM = 2AB − AC A M(−2; 6; −4) B M(5; 5; 0) C M(2; −6; 4) D M(−2; −6; 4) √ Câu 48 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ A (x − 4)2 + (y + 8)2 = √5 B (x + 4)2 + (y − 8)2 = 20 2 C (x + 4) + (y − 8) = D (x − 4)2 + (y + 8)2 = 20 Câu 49 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (2; −3; 4) −n = (−2; 3; 4) −n = (−2; 3; 1) −n = (2; 3; −4) A → B → C → D → Câu 50 Trong số phức z thỏa mãn z − i = z¯ − − 3i Hãy tìm z có mơđun nhỏ 27 27 6 27 A z = − + i B z = + i C z = − i D z = − − i 5 5 5 5 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001