Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng A ln 3 2 B ln[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln 23 B ln 32 C ln a D ln 6a2 Câu Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 B 16π C 169 D 15 A 16π 15 Câu Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu Tiệm cận ngang đồ thị hàm số y = A y = 13 B y = 23 2x+1 3x−1 đường thẳng có phương trình: C y = − 31 D y = − 23 Câu Cho khối lăng trụ đứng ABC · A′ B′C ′ √có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ A 62 a3 B 2a3 C 22 a3 D 42 a3 Câu Tập nghiệm bất phương trình x+1 < A [1; +∞) B (−∞; 1] C (−∞; 1) D (1; +∞) Câu Tích tất nghiệm phương trình ln2 x + ln x − = A −3 B −2 C e12 D e3 Câu Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 45◦ B 60◦ C 30◦ D 90◦ − → Câu Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → Góc hai mặt phẳng (P) (Q) n→ Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 90 B 30 C 45◦ D 60◦ Câu 10 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (0 ; +∞) B (−∞ ; −2) C (−1 ; 4) D (−2 ; 0) Câu 11 Cho khối lăng trụ đứng ABC.A′ B′C ′ √ có đáy ABC tam giác vuông cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 A B C D 6 Câu 12 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 76 B 56 C 48 D 64 Câu 13 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A H(−2; −1; 3) B J(−3; 2; 7) C I(−1; −2; 3) D K(3; 0; 15) Trang 1/4 Mã đề 001 √ √ a Tính góc Câu 14 Cho hình chóp S ABCD có cạnh đáy a đường cao S H mặt bên (S DC) mặt đáy A 30o B 60o C 45o D 90o Câu 15 Đường cong hình bên đồ thị hàm số bốn hàm số liệt kê bốn phương án Hỏi hàm số hàm số nào? A B C D Câu 16 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 21 B 18 C 12 D 27 Câu 17 Một vectơ pháp tuyến đường thẳng ∆ : y = 2x + là: A − n→∆ (1; 1) B − n→∆ (−2; −1) C − n→∆ (1; −1) D − n→∆ (2; −1) Câu 18 Từ Hà Nội bay vào Đà Nẵng có chuyến bay trực tiếp ba hãng máy bay Hãng thứ cung cấp chuyến bay ngày Hãng thứ hai cung cấp chuyến bay ngày Hãng thứ ba cung cấp chuyến bay ngày Hỏi ngày có cách bay trực tiếp từ Hà Nội vào Đà Nẵng? A 12 cách B cách C cách D 16 cách Câu 19 Giả sử có khai triển (1 − 2x)n = a0 + a1 x + a2 x2 + + an xn Tìm a4 biết a0 + a1 + a2 = 31 A 80 B 40 C −40 D −80 Câu 20 Có cách chọn hai học sinh từ nhóm gồm 10 học sinh? A A210 B 102 C 210 D C10 Câu 21 Cho tập hợp A = {1; 2; 3; 4; 5; 6; 7} Hỏi có cách lập số có ba chữ số khác từ chữ số thuộc tập hợp A? A A47 B C73 C A37 D C74 Câu 22 Một vectơ pháp tuyến đường thẳng ∆ : y = 2x + là: A − n→∆ (1; 1) B − n→∆ (1; −1) C − n→∆ (2; −1) D − n→∆ (−2; −1) −−→ Câu 23 Trong mặt phẳng toạ độ Oxy, cho A(−3; 2), B(5; −1) Toạ độ vectơ AB là: A (2; 1) B (8; −3) C (−2; −1) D (−8; 3) Câu 24 Một lớp có 34 học sinh Hỏi có cách chọn 10 học sinh để tham gia hoạt động trồng trường? 34! 10! 10 A B C34 C D A10 34 10! (34 − 10)! Câu 25 Đội tuyển tốn có bạn nam bạn nữ Giáo viên phải chọn nhóm bốn bạn Hỏi giáo viên có cách chọn? 12! A B A412 C C12 D 12! 4! Câu 26 Khối trụ có bán kính đáy chiều cao Rthì thể tích A πR3 B 6πR3 C 2πR3 D 4πR3 √ ′ ′ ′ ′ Câu 27 B C có đáy a, AA = 3a Thể tích khối lăng trụ cho là: √ 3Cho lăng trụ ABC.A √ A 3a B a3 C 3a3 D 3a3 −u (2; −2; 1), kết luận sau đúng? Câu 28 Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = −u | = √3 A |→ B |→ C |→ D |→ Câu 29 Hàm số sau khơng có cực trị? A y = x3 − 6x2 + 12x − C y = x2 B y = cos x D y = x4 + 3x2 + Trang 2/4 Mã đề 001 Câu 30 Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường hypebol B Đường tròn C Đường elip D Đường parabol Câu 31 Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 60a3 B 30a3 C 100a3 D 20a3 Câu 32 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≥ B m > C m ≤ D m < Câu 33 Hàm số sau đồng biến R? A y = x4 + 3x2 + C y = x2 √ √ B y = x2 + x + − x2 − x + D y = tan x Câu 34 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D √ Giá trị lớn biểu thức Câu 35 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | + 2|z √ + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 z Câu 36 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? 1√+ |z|2 1 A B C D Câu 37 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A Phần thực z số âm B z số ảo C |z| = D z số thực không dương Câu 38 Cho số phức z (không phải số thực, số ảo) thỏa mãn + z + z2 số thực − z + z2 Khi mệnh đề sau đúng? 3 B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 √ √ √ 42 √ Câu 39 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 Câu 40 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 10 B C D 15 Câu 41 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu √ thức P = |z1 | + |z √2 | √ √ A P = 34 + B P = 26 C P = + D P = Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ A B C √ D 2 Trang 3/4 Mã đề 001 Câu 43 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A B C −4 D 2i Câu 44 Tìm đạo hàm hàm số: y = (x2 + 1) 1 1 3 − 2 A (2x) B 3x(x + 1) C x D (x + 1) Câu 45 Cho cấp số nhân (un ) với u1 = − ; u7 = −32 Tìm q? C q = ±4 D q = ±1 A q = ±2 B q = ± Câu 46 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 A B C −16 D 16 → Câu 47 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương −a = (4; −6; 2) Phương trình tham số đường thẳng ∆ A x = −2 + 2ty = −3tz = + t C x = + 2ty = −3tz = + t B x = + 2ty = −3tz = −1 + t D x = −2 + 4ty = −6tz = + 2t − −a = (−1; 1; 0), → −c = (1; 1; 1) Trong Câu 48 Trong không gian Oxyz, cho ba véctơ → b = (1; 1; 0), → mệnh đề sau, mệnh đề sai? √ √ → − − → − → −c = − → − C → D b ⊥→ c A b ⊥ a B a = Câu 49 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M cho 3MA2 + 2MB2 − MC đạt giá trị nhỏ 3 3 B M( ; ; −1) C M(− ; ; 2) D M(− ; ; −1) A M(− ; ; −1) 4 4 ′ ′ ′ Câu 50 Cho lăng trụ đứng ABC.A B C có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng ′ ′ ′ 600 Biết diện tích tam giác ∆A′ BC BC √ 2a Tính thể tích V khối lăng trụ ABC.A 3 √ a 2a A V = a3 B V = C V = 3a3 D V = 3 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001