Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 7 − 6i có tọa đ[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (6; 7) B (7; −6) C (7; 6) D (−6; 7) Câu Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 105 B 210 C 225 D 30 Câu Phần ảo số phức z = − 3i A −2 B C −3 D Câu Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho B 2πrl C πrl D 31 πr2 l A 23 πrl2 R4 R4 R4 Câu Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A B −1 C D Câu Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (1; 2; 3) B (−2; −4; −6) C (−1; −2; −3) D (2; 4; 6) Câu Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; 2; −3) B (−1; 2; 3) C (1; −2; 3) D (−1; −2; −3) Câu Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 45◦ B 90◦ C 30◦ D 60◦ Câu Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón B S = πa2 C S = πa2 D S = πa2 A S = πa2 4 Câu 10 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 56 B 48 C 64 D 76 Câu 11 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A −7 B −1 C D 2 R R Câu 12 Cho hàm số f (x) liên tục R ( f (x) + 2x) = Tính f (x) A B C −1 D −9 √ a Câu 13 Cho hình chóp S ABCD có cạnh đáy a đường cao S H Tính góc mặt bên (S DC) mặt đáy A 30o B 45o C 90o D 60o √ Câu 14 Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2022 B 2021 C 2019 D 2020 Trang 1/4 Mã đề 001 Câu 15 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B C D Câu 16 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho đồng biến khoảng (−∞; 3) B Hàm số cho đồng biến khoảng (1; 4) C Hàm số cho nghịch biến khoảng (3; +∞) D Hàm số cho nghịch biến khoảng (1; 4) −−→ −−→ Câu 17 Trong mặt phẳng toạ độ Oxy, cho ba điểm A(−1; 2), B(2; −2), C(3; 1) Toạ độ vectơ AB + BC là: A (4; −1) B (−4; 1) C (−4; −1) D (4; 1) Câu 18 Số cách chia 10 học sinh thành ba nhóm có 2, 3, học sinh là: 5 + C83 + C55 D C10 + C10 + C10 C C10 + C53 + C22 B C10 · C83 · C55 A C10 Câu 19 Trong mặt phẳng toạ độ Oxy, toạ độ vectơ 2⃗i − 7⃗j là: A (2; −7) B (−7; 2) C (2; 7) D (−2; 7) Câu 20 Hệ số x3 khai triển (2x + 1)4 là: A B C 32 D 10 Câu 21 Trong mặt phẳng toạ độ Oxy, cặp vectơ sau có phương? A = (1; −1) = (3; 3) B ⃗a = (− ; 2) ⃗b = (2; −6) √ √ C ⃗c = ( 2; 2) d⃗ = (2; 2) D ⃗u = (2; 1) ⃗v = (2; −6) Câu 22 Có cách xếp sách Văn khác sách Toán khác kệ sách dài sách Văn phải xếp kề nhau? A 5!.7! B 12! C 5!.8! D 2.5!.7! −−→ −−→ Câu 23 Trong mặt phẳng toạ độ Oxy, cho ba điểm A(−1; 2), B(2; −2), C(3; 1) Toạ độ vectơ AB + BC là: A (4; −1) B (−4; −1) C (4; 1) D (−4; 1) Câu 24 Đội tuyển tốn có bạn nam bạn nữ Giáo viên phải chọn nhóm bốn bạn Hỏi giáo viên có cách chọn? 12! A 12! B C12 C A412 D 4! Câu 25 Ví dụ sau ví dụ hốn vị? A Số cách xếp hàng bạn nhóm 10 bạn B Số cách chọn bạn nhóm 10 bạn C Số cách xếp hàng theo hàng dọc 10 bạn D Số cách chia 10 bạn vào hai nhóm Câu 26 Trong khơng gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (−2; 0; 0) B (0; 6; 0) C (0; 2; 0) D (0; −2; 0) ax + b Câu 27 Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A bc > B ac < C ad > D ab < Câu 28 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(8; ; 19) B C(6; −17; 21) C C(20; 15; 7) D C(6; 21; 21) Trang 2/4 Mã đề 001 Câu 29 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; 3; 1) B M ′ (2; 3; 1) C M ′ (−2; −3; −1) D M ′ (2; −3; −1) đúng? x B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số nghịch biến R Câu 30 Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến (0; +∞) C Hàm số đồng biến R Câu 31 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 3a 2a 5a a A B √ C D √ 5 Câu 32 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 5; 0) C (0; 0; 5) D (0; 1; 0) −u (2; −2; 1), kết luận sau đúng? Câu 33 Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = −u | = √3 D |→ A |→ B |→ C |→ √ Giá trị lớn biểu thức Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = Câu 35 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = 2016 B P = C P = −2016 D P = Câu 36 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | Câu 37 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? A < |z| < B < |z| < 2 + z + z2 số thực − z + z2 < |z| < D < |z| < 2 √ Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm Q B điểm M C bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm N D điểm P Câu 39 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A |z| = B z số thực không dương C z số ảo D Phần thực z số âm Câu 40 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 21008 B −21008 C 22016 D −22016 Trang 3/4 Mã đề 001 Câu 41 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = C P = D P = A P = 2 Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 2)2 B P = |z|2 − C P = |z|2 − D P = (|z| − 4)2 Câu 43 Tìm nguyên hàm hàm số f (x) = cos 3x R R sin 3x sin 3x A cos 3xdx = + C B cos 3xdx = − + C 3 R R C cos 3xdx = sin 3x + C D cos 3xdx = sin 3x + C Câu 44 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 4) −n = (−2; 3; 1) −n = (2; −3; 4) −n = (2; 3; −4) A → B → C → D → π R4 Câu 45 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 + 16π − 16 π2 − π2 + 15π A B C 16 16 16 Câu 46 Thể tích khối lập phương có cạnh 3a là: A 8a3 B 3a3 C 27a3 π2 + 16π − D 16 D 2a3 Câu 47 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = B S = −6 C S = −5 D S = Câu 48 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 A V = 3a3 B V = a3 C V = 2a3 D V = Câu 49 Cho lăng trụ đứng ABC.A′ B′C ′ có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng ′ ′ ′ 600 Biết diện tích tam giác ∆A′ BC 2a2 Tính thể tích V khối lăng trụ ABC.A BC √ 3 √ 2a a B V = a3 C V = 3a3 D V = A V = 3 Câu 50 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A B C −4 D 2i - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001