Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Xét các số phức z thỏa mãn ∣∣∣z2 − 3 − 4i ∣∣∣ = 2|z| Gọi M và m l[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Xét số phức z thỏa mãn z2 − − 4i = 2|z| Gọi M m giá trị lớn giá trị nhỏ của√ |z| Giá trị M + m2√bằng A 11 + B 18 + C 28 D 14 Câu Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 60◦ B 30◦ C 45◦ D 90◦ Câu Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 A 35 B 17 C 359 D 354 Câu Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (2; +∞) B (1; 2) C (−∞; 1) D (1; +∞) Câu Cho khối lập phương có cạnh Thể tích khối lập phương cho C D A B 83 Câu Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n3 = (1; 1; 1) B → n4 = (1; 1; −1) C → n2 = (1; −1; 1) D → n1 = (−1; 1; 1) Câu Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A 11 B C D 12 Câu Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) không cắt mặt cầu (S ) B (P) cắt mặt cầu (S ) C (P) tiếp xúc mặt cầu (S ) D (P) qua tâm mặt cầu (S ) Câu 10 Đường cong hình bên đồ thị hàm số bốn hàm số liệt kê bốn phương án Hỏi hàm số hàm số nào? A B C D √ √ a Tính góc Câu 11 Cho hình chóp S ABCD có cạnh đáy a đường cao S H mặt bên (S DC) mặt đáy A 45o B 30o C 90o D 60o Câu 12 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −8 B −2 C −6 D −4 ax + b có đồ thị đường cong hình vẽ bên Tọa độ giao điểm đồ thị Câu 13 Cho hàm số y = cx + d hàm số cho trục hoành A (0 ; −2) B (0 ; 3) C (3; ) D (2 ; 0) Trang 1/4 Mã đề 001 Câu 14 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A 6a3 B 2a3 C 6a2 D a3 Câu 15 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a B C 2a D A a 2 Câu 16 Cho hàm số y = f (x) hàm số bậc có đồ thị hình vẽ Giá trị cực tiểu hàm số cho A B C −2 D −1 Câu 17 Một vectơ pháp tuyến đường thẳng ∆ : y = 2x + là: A − n→∆ (1; −1) B − n→∆ (2; −1) C − n→∆ (−2; −1) D − n→∆ (1; 1) −−→ Câu 18 Trong mặt phẳng toạ độ Oxy, cho A(−3; 2), B(5; −1) Toạ độ vectơ AB là: A (2; 1) B (−2; −1) C (8; −3) D (−8; 3) −−→ −−→ Câu 19 Trong mặt phẳng toạ độ Oxy, cho ba điểm A(−1; 2), B(0; −2), C(3; 3) Toạ độ vectơ 2AB − BC là: A (10; 28) B (14; 12) C (−10; −28) D (−14; −12) Câu 20 Trong mặt phẳng toạ độ Oxy, toạ độ vectơ 2⃗i − 7⃗j là: A (2; −7) B (−7; 2) C (−2; 7) D (2; 7) Câu 21 Ví dụ sau ví dụ hốn vị? A Số cách xếp hàng bạn nhóm 10 bạn B Số cách chọn bạn nhóm 10 bạn C Số cách xếp hàng theo hàng dọc 10 bạn D Số cách chia 10 bạn vào hai nhóm Câu 22 Đội tuyển tốn có bạn nam bạn nữ Giáo viên phải chọn nhóm bốn bạn Hỏi giáo viên có cách chọn? 12! A 12! B A412 C C12 D 4! Câu 23 Trong mặt phẳng toạ độ Oxy, cho ⃗a = (2; −3), ⃗b = (−2; 5) Toạ độ vectơ −⃗a + 3⃗b là: A (−8; 18) B (8; −18) C (−8; −18) D (8; 18) Câu 24 Một lớp có 34 học sinh Hỏi có cách chọn 10 học sinh để tham gia hoạt động trồng trường? 10! 34! 10 A C34 C D A10 B 34 (34 − 10)! 10! Câu 25 Lớp 10 A có 21 bạn nam 18 bạn nữ Hỏi có cách chọn học sinh làm lớp trưởng? A 158 cách B 168 cách C 39 cách D 29 cách p Câu 26 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếu < x < y < −3 C Nếux > thìy < −15 D Nếu < x < π y > − 4π2 Câu 27 Hàm số sau cực trị? A y = x4 + 3x2 + C y = cos x B y = x2 D y = x3 − 6x2 + 12x − −u (2; −2; 1), kết luận sau đúng? Câu 28 Trong không gian với hệ tọa độ Oxyz cho → √ −u | = −u | = −u | = −u | = A |→ B |→ C |→ D |→ Trang 2/4 Mã đề 001 x tập xác định Câu 29 Giá trị nhỏ hàm số y = x +1 1 A y = B y = C y = −1 D y = − R R R R 2 Câu R30 Công thức sai? R A R cos x = sin x + C B R sin x = − cos x + C C a x = a x ln a + C D e x = e x + C Câu 31 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 2a a 5a 3a C √ A √ B D 5 Câu 32 Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 360 B 600 C 450 D 300 Câu 33 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B −6 C D z+1 Câu 34 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = 2 Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 B P = (|z| − 4)2 C P = (|z| − 2)2 D P = |z|2 − A P = |z|2 − Câu 36 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | Câu 37 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = B P = + C P = 34 + D P = 26 = Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ A √ B C D 2 Câu 39 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D Câu 40 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A Phần thực z số âm B z số thực không dương C z số ảo D |z| = Câu 41 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C 2 D Câu 42 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? A < |z| < B < |z| < 2 2 C < |z| < 2 + z + z2 số thực − z + z2 D < |z| < Trang 3/4 Mã đề 001 Câu 43 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 1) −n = (2; −3; 4) −n = (2; 3; −4) −n = (−2; 3; 4) A → B → C → D → −a = (4; −6; 2) Phương Câu 44 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = −2 + 2ty = −3tz = + t B x = −2 + 4ty = −6tz = + 2t C x = + 2ty = −3tz = −1 + t D x = + 2ty = −3tz = + t Câu 45 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 D A B −16 C 16 Câu 46 Tìm nguyên hàm hàm số f (x) = cos 3x R R sin 3x A cos 3xdx = sin 3x + C B cos 3xdx = + C R R sin 3x C cos 3xdx = − + C D cos 3xdx = sin 3x + C Câu 47 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh hình trụ A 4πa2 B 6πa2 C 5πa2 D 2πa2 R3 Câu 48 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị [1 + f (x)]dx A 10 26 B C D 32 √ 2, OD = Câu 49 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB) √ √ B d = 2a C d = a D d = a A d = a Câu 50 Cho hàm số y = f (x) có đạo hàm f ′ (x) = x2 − 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến khoảng A (0; 2) B (−∞; −2) C (2; +∞) D (−2; 0) - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001