Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng c[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = R B d > R C d = D d < R Câu Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ B 22 a C 33 a D 2a A a Câu Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 = y−1 = z−1 Gọi (P) mặt 2 −3 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) A 13 B 113 C D Câu Xét số phức z thỏa mãn z2 − − 4i = 2|z| Gọi M m giá trị lớn giá trị nhỏ |z| Giá trị M + m2 A 28 B 14 √ C 11 + √ D 18 + Câu R5 Cho hàm số f (x) = cos x + x Khẳng định đúng? R 2 A f (x)dx = − sin x + x + C B f (x)dx = sin x + x2 + C R R C f (x)dx = sin x + x2 + C D f (x)dx = − sin x + x2 + C Câu Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+ x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) B 43 C 21 D 52 A 41 i R2 R2h Câu Nếu f (x)dx = 12 f (x) − dx A −2 B C D Câu Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 14 220 55 Câu 10 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) qua tâm mặt cầu (S ) B (P) tiếp xúc mặt cầu (S ) C (P) cắt mặt cầu (S ) D (P) không cắt mặt cầu (S ) z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 11 Cho số phức zthỏa mãn i + trịn (C) Tính bán kính rcủa đường tròn (C) √ √ D r = A r = B r = C r = Câu 12 Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2022 B 2019 C 2021 D 2020 Trang 1/4 Mã đề 001 Câu 13 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (−2 ; 0) B (−∞ ; −2) C (−1 ; 4) D (0 ; +∞) Câu 14 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) điểmM(1; 2; 2)thuộc mặt cầu Phương trình (S ) A (x − 1)2 + (y − 4)2 + (z + 2)2 = 40 B (x − 1)2 + (y − 4)2 + (z + 2)2 = 10 √ C (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 D (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 Câu 15 Bất phương trình log2021 (x − 1) ≤ có nghiệm nguyên? A 2022 B C D 2 Câu 16 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 17 Ví dụ sau ví dụ hoán vị? A Số cách xếp hàng theo hàng dọc 10 bạn B Số cách chia 10 bạn vào hai nhóm C Số cách xếp hàng bạn nhóm 10 bạn D Số cách chọn bạn nhóm 10 bạn Câu 18 Một vectơ pháp tuyến đường thẳng ∆ : y = 2x + là: A − n→∆ (1; −1) B − n→∆ (−2; −1) C − n→∆ (1; 1) D − n→∆ (2; −1) Câu 19 Hệ số x3 khai triển (2x + 1)4 là: A B C 32 D 10 Câu 20 Trong mặt phẳng toạ độ Oxy, cho ⃗a = (2; −3), ⃗b = (−2; 5) Toạ độ vectơ −⃗a + 3⃗b là: A (−8; 18) B (8; −18) C (8; 18) D (−8; −18) Câu 21 Một đường thẳng có vectơ pháp tuyến? A B C D Vơ số Câu 22 Giả sử có khai triển (1 − 2x)n = a0 + a1 x + a2 x2 + + an xn Tìm a4 biết a0 + a1 + a2 = 31 A 40 B −80 C 80 D −40 Câu 23 Phương trình tổng quát đường thẳng ∆ qua điểm M(x0 ; y0 ) có vectơ pháp tuyến ⃗n(a; b) là: x − x0 y − y0 = A a(x − x0 ) + b(y − y0 ) = B a b C b(x − x0 ) − a(y − y0 ) = D a(x + x0 ) + b(y + y0 ) = Câu 24 Ví dụ sau ví dụ hoán vị? A Số cách xếp hàng theo hàng dọc 10 bạn B Số cách xếp hàng bạn nhóm 10 bạn C Số cách chọn bạn nhóm 10 bạn D Số cách chia 10 bạn vào hai nhóm Câu 25 Nam muốn tơ màu cho hình vng hình trịn Biết tơ màu xanh, màu đỏ màu vàng cho hình vng, tơ màu hồng màu tím cho hình trịn Hỏi Nam có cách tơ màu cho hai hình? A cách B cách C cách D cách Câu 26 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến (0; +∞) B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến R D Hàm số đồng biến R Câu 27 Bất đẳng thức sau đúng? A 3−e > 2−e C 3π < 2π √ √ π e B ( √3 + 1) > ( √ + 1) e π D ( − 1) < ( − 1) Trang 2/4 Mã đề 001 Câu 28 Cho a > 1; < x < y Bất đẳng thức sau đúng? B log x > log y C loga x > loga y A log x > log y a D ln x > ln y a Câu 29 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A −6 B C D Câu 30 Kết đúng? R sin3 x A sin2 x cos x = − + C R C sin2 x cos x = cos2 x sin x + C B R sin2 x cos x = −cos2 x sin x + C D R sin3 x sin x cos x = + C Câu 31 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hoành độ x = là: x x A y = + B y = −1+ ln 5 ln ln x x C y = +1− D y = − ln ln 5 ln ln Câu 32 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (−2; −1; 2) C (2; −1; −2) D (−2; 1; 2) Câu 33 Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > e2 B m > C m ≥ e−2 D m > 2e Câu 34 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ B 15 C D A 10 √ i Giá trị (a + bz + cz2 )(a + bz2 + cz) Câu 35 Cho a, b, c số thực z = − + 2 A B a2 + b2 + c2 + ab + bc + ca C a2 + b2 + c2 − ab − bc − ca D a + b + c √ 2 Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ √ 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 2 C |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = z+1 Câu 37 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = Câu 38 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 39 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B 18 C D Câu 40 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D Trang 3/4 Mã đề 001 Câu 41 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = C P = D P = A P = 2 √ Câu 42 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z √ + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = −a = (4; −6; 2) Phương Câu 43 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = −2 + 4ty = −6tz = + 2t C x = + 2ty = −3tz = + t B x = + 2ty = −3tz = −1 + t D x = −2 + 2ty = −3tz = + t Câu 44 Tính đạo hàm hàm số y = 2023 x A y′ = 2023 x B y′ = 2023 x ln 2023 C y′ = x.2023 x−1 D y′ = 2023 x ln x Câu 45 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = −5 B S = C S = −6 D S = Câu 46 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 4) −n = (2; −3; 4) −n = (2; 3; −4) −n = (−2; 3; 1) A → B → C → D → y z−2 x+1 = = Viết Câu 47 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : 1 phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : x − 2y + = B (P) : y − z + = C (P) : y + z − = D (P) : x − 2z + = Câu 48 Với a số thực dương tùy ý, log5 (5a) A − log5 a B + log5 a C + log5 a D − log5 a Câu 49 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số ngun dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D z x−1 y+2 = = không qua điểm đây? Câu 50 Đường thẳng (∆) : −1 A (1; −2; 0) B A(−1; 2; 0) C (−1; −3; 1) D (3; −1; −1) - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001