1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi minh họa thpt môn toán (664)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 123,84 KB

Nội dung

Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hàm số y = f (x) có đạo hàm f ′(x) = (x − 2)2(1 − x) với mọi[.]

Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; +∞) B (2; +∞) C (1; 2) D (−∞; 1) Câu R2 Cho hàm số f (x) = cos x + x Khẳng định đúng? R A f (x)dx = sin x + x2 + C B f (x)dx = − sin x + x2 + C R R C f (x)dx = − sin x + x2 + C D f (x)dx = sin x + x2 + C Câu Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (−1; −2; −3) B (1; 2; −3) C (−1; 2; 3) D (1; −2; 3) Câu Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n4 = (1; 1; −1) B → n3 = (1; 1; 1) C → n2 = (1; −1; 1) D → n1 = (−1; 1; 1) Câu Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (−∞; 1) B (3; +∞) C (0; 2) D (1; 3) Câu Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d > R B d < R C d = D d = R Câu Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Câu Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (0 ; +∞) B (−2 ; 0) C (−∞ ; −2) D (−1 ; 4) Câu 10 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + 2ty = 2tz = + t B x = + ty = tz = + t C x = − ty = tz = + t D x = + ty = tz = − t Câu 11 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 12 B 27 C 18 D 21 2 R R Câu 12 Cho hàm số f (x) liên tục R ( f (x) + 2x) = Tính f (x) A −1 B C −9 D Câu 13 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 14 220 55 Trang 1/4 Mã đề 001 f (x)dx = sin 3x + C Mệnh đề sau mệnh đề đúng? cos 3x cos 3x A f (x) = − B f (x) = −3 cos 3x C f (x) = cos 3x D f (x) = 3 Câu 14 Biết R Câu 15 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 20 B 17 C 13 D 18 √ √ a Tính góc Câu 16 Cho hình chóp S ABCD có cạnh đáy a đường cao S H mặt bên (S DC) mặt đáy A 60o B 45o C 30o D 90o Câu 17 Có cách chọn hai học sinh từ nhóm gồm 10 học sinh? A 210 B A210 C C10 D 102 Câu 18 Một vectơ pháp tuyến đường thẳng ∆ : y = 2x + là: A − n→∆ (−2; −1) B − n→∆ (1; 1) C − n→∆ (1; −1) D − n→∆ (2; −1) Câu 19 Tổng hệ số khai triển (x + 2)4 là: A 79 B 16 C 81 D 14 Câu 20 Đội tuyển tốn có bạn nam bạn nữ Giáo viên phải chọn nhóm bốn bạn Hỏi giáo viên có cách chọn? 12! C A412 D C12 A 12! B 4! Câu 21 Một vectơ pháp tuyến đường thẳng ∆ : y = 2x + là: A − n→∆ (1; 1) B − n→∆ (−2; −1) C − n→∆ (1; −1) D − n→∆ (2; −1) Câu 22 Giả sử có khai triển (1 − 2x)n = a0 + a1 x + a2 x2 + + an xn Tìm a4 biết a0 + a1 + a2 = 31 A 40 B 80 C −40 D −80 Câu 23 Phương trình tổng quát đường thẳng ∆ qua điểm M(x0 ; y0 ) có vectơ pháp tuyến ⃗n(a; b) là: A b(x − x0 ) − a(y − y0 ) = B a(x − x0 ) + b(y − y0 ) = x − x0 y − y0 = C a(x + x0 ) + b(y + y0 ) = D a b Câu 24 Trong mặt phẳng toạ độ Oxy, cặp vectơ sau có phương? A ⃗a = (− ; 2) ⃗b = (2; −6) B ⃗u = (2; 1) ⃗v = (2; −6) √ √ C = (1; −1) = (3; 3) D ⃗c = ( 2; 2) d⃗ = (2; 2) Câu 25 Đường thẳng ∆ có vectơ phương − u→(12; −13) Vectơ sau vectơ pháp tuyến ∆? A − n→∆ (−12; −13) ∆ B − n→∆ (13; 12) C − n→∆ (12; 13) D − n→∆ (−13; 12) Câu 26 Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A m < B −4 < m < C < m , + 2x x+1 D ∀m ∈ R Câu 27 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu 28 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; 3; 1) B M ′ (2; −3; −1) C M ′ (−2; −3; −1) D M ′ (2; 3; 1) Trang 2/4 Mã đề 001 x tập xác định Câu 29 Giá trị nhỏ hàm số y = x +1 1 A y = B y = − C y = −1 D y = R R R R 2 Câu R30 Công thức sai? R A R sin x = − cos x + C B R cos x = sin x + C C e x = e x + C D a x = a x ln a + C Câu 31 Cho hai số thực a, bthỏa mãn a√> b > Kết luận nào√sau sai? √ √ √5 √ a b − − A e > e B a b D a < b Câu 32 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = B x = + 2ty = + tz = C x = + 2ty = + tz = − 4t D x = + ty = + 2tz = Câu 33 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số nghịch biến R D Hàm số nghịch biến (0; +∞) z Câu 34 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ C D A B 2 Câu 35 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | √ Câu 36 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 A ≤ |z| ≤ B |z| < C |z| > D < |z| < 2 2 2z − i Mệnh đề sau đúng? Câu 37 Cho số phức z thỏa mãn |z| ≤ ĐặtA = + iz A |A| ≥ B |A| ≤ C |A| < D |A| > √ Câu 38 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 + ab + bc + ca B 2 C a + b + c − ab − bc − ca D a + b + c Câu 39 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn của√biểu thức P = |z1 | + |z √2 | √ √ A P = + B P = C P = 34 + D P = 26 Câu 40 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = + i C A = D A = −1 z số thực Tính giá trị biểu Câu 41 Cho số phức z , cho z số thực w = + z2 |z| thức bằng? + |z|2 √ 1 A B C D Câu 42 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu!diễn số phức thuộc tập hợp sau đây? ! ! ! 1 9 B ; C ; D ; +∞ A 0; 4 4 Trang 3/4 Mã đề 001 Câu 43 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A M(−2; −4) B x = −2 C M(1; −2) D x = Câu 44 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 209 A B C D 21 210 105 210 Câu 45 Tìm đạo hàm hàm số: y = (x + 1) 1 1 3 − B (x + 1) C x D 3x(x + 1) A (2x) 2 Câu 46 Tập nghiệm bất phương trình log3 (10 − x+1 ) ≥ − x chứa số nguyên A Vô số B C D π R4 Câu 47 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 + 16π − 16 π2 + 16π − π2 + 15π A B C 16 16 16 Câu 48 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A B C −4 π2 − D 16 D 2i Câu 49 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A [−3; 3] B (−∞; 3] C (0; 3] D (−∞; −3] ∪ [3; +∞) − −a = (−1; 1; 0), → −c = (1; 1; 1) Trong Câu 50 Trong không gian Oxyz, cho ba véctơ → b = (1; 1; 0), → mệnh đề sau, mệnh đề sai? √ → √ → − → → − → − − −c = − B b ⊥ a C b ⊥ c D → A a = - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001

Ngày đăng: 07/04/2023, 10:40

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN