1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi minh họa thpt môn toán (705)

4 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 123,5 KB

Nội dung

Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Nếu ∫ 2 0 f (x)dx = 4 thì ∫ 2 0 [ 1 2 f (x) − 2 ] dx bằng A 0 B 8[.]

Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Nếu A R2 R h1 f (x)dx = B i f (x) − dx C −2 D Câu Tích tất nghiệm phương trình ln2 x + ln x − = C e13 D −2 A −3 B e12 Câu Có cặp số nguyên (x; y) thỏa mãn       log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ? A 49 B 90 C 48 D 89 Câu Cho khối lăng trụ đứng ABC · A B C √có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ B 2a3 C 22 a3 D 62 a3 A 42 a3 ′ ′ ′ Câu Cho hàm số f (x) liên tục R Gọi R 2F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx B C 43 D A 23 Câu Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; 2; −3) B (−1; 2; 3) C (−1; −2; −3) D (1; −2; 3) Câu Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Câu Có số ngun x thỏa mãn log3 A 193 B 92 x2 −16 343 < log7 C 186 x2 −16 ? 27 D 184 Câu Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón A S = πa2 B S = πa2 C S = πa2 D S = πa2 4 Câu 10 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + ty = tz = − t B x = + 2ty = 2tz = + t C x = − ty = tz = + t D x = + ty = tz = + t Câu 11 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 20 B 13 C 17 D 18 Câu 12 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A B −2 C D −3 Câu 13 Tổng tất nghiệm phương trình log2 (6 − x ) = − x A B C D Câu 14 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (−∞ ; −2) B (−2 ; 0) C (−1 ; 4) D (0 ; +∞) Trang 1/4 Mã đề 001 Câu 15 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD)√theo a √ a a C 2a D A B a 2 Câu 16 Đường cong hình bên đồ thị hàm số bốn hàm số liệt kê bốn phương án Hỏi hàm số hàm số nào? A B C D Câu 17 Hệ số x3 khai triển (2x + 1)4 là: A 10 B C D 32 Câu 18 Cho tập hợp A = {1; 2; 3; 4; 5; 6; 7} Hỏi có cách lập số có ba chữ số khác từ chữ số thuộc tập hợp A? A A47 B A37 C C74 D C73 Câu 19 Từ Hà Nội bay vào Đà Nẵng có chuyến bay trực tiếp ba hãng máy bay Hãng thứ cung cấp chuyến bay ngày Hãng thứ hai cung cấp chuyến bay ngày Hãng thứ ba cung cấp chuyến bay ngày Hỏi ngày có cách bay trực tiếp từ Hà Nội vào Đà Nẵng? A cách B 12 cách C cách D 16 cách Câu 20 Khai triển (x + 1)4 là: A x4 + 2x2 + C x4 + 4x3 + 6x2 + 4x + B x4 + 5x3 + 10x2 + 5x + D x4 + 3x3 + 4x2 + 3x + −−→ Câu 21 Trong mặt phẳng toạ độ Oxy, cho A(3; −2) Toạ độ vectơ OA là: A (2; −3) B (−2; 3) C (−3; 2) D (3; −2) Câu 22 Trong mặt phẳng toạ độ Oxy, toạ độ vectơ 2⃗i − 7⃗j là: A (−7; 2) B (2; −7) C (−2; 7) D (2; 7) Câu 23 Trong mặt phẳng toạ độ Oxy, cho ⃗a = (2; −3), ⃗b = (−2; 5) Toạ độ vectơ −⃗a + 3⃗b là: A (−8; 18) B (8; 18) C (8; −18) D (−8; −18) Câu 24 Một lớp có 34 học sinh Hỏi có cách chọn 10 học sinh để tham gia hoạt động trồng trường? 10! 34! 10 B A10 C D C34 A 34 (34 − 10)! 10! Câu 25 Có cách chọn hai học sinh từ nhóm gồm 10 học sinh? A 102 B C10 C A210 D 210 x π π π F( ) = √ Tìm F( ) cos x π π ln π π ln C F( ) = + D F( ) = − 4 Câu 26 Biết F(x) nguyên hàm hàm số f (x) = π π ln A F( ) = − 4 Câu 27 Tính I = π π ln B F( ) = + R1 √3 7x + 1dx 20 A I = B I = 45 28 C I = 21 D I = 60 28 Câu 28 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu 29 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; 3; 1) B M ′ (2; 3; 1) C M ′ (2; −3; −1) D M ′ (−2; −3; −1) Trang 2/4 Mã đề 001 Câu 30 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x − B y = +1− A y = ln ln 5 ln ln x x C y = −1+ D y = + ln ln 5 ln Câu 31 Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? + 2x x+1 D m < Câu 32 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(6; 21; 21) B C(20; 15; 7) C C(8; ; 19) D C(6; −17; 21) Câu 33 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≤ B m ≥ C m > D m < A < m , B ∀m ∈ R C −4 < m < Câu 34 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C 2 D √ 2 Câu 35 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 √ 2 2 2 2 C |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = D |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = 2z − i Câu 36 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| > B |A| ≤ C |A| < D |A| ≥ z Câu 37 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ A B C 2 D Câu 38 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 22016 B −21008 C 21008 D −22016 Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng?  2  2 A P = (|z| − 4)2 B P = (|z| − 2)2 C P = |z|2 − D P = |z|2 − Câu 40 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số thực không dương B Phần thực z số âm C z số ảo D |z| = Câu 41 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = −1 C A = D A = + i Câu 42 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 10 B 15 C D Trang 3/4 Mã đề 001 √ Câu 43 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: A (x + 4)2 + (y − 8)2 = 20 √ C (x + 4)2 + (y − 8)2 = B (x − 4)2 + (y + 8)2 = 20 √ D (x − 4)2 + (y + 8)2 = Câu 44 Gọi S tập hợp tất giá trị tham số m để bất phương trình log3 (x2 − 5x + m) > log3 (x − 2) có tập nghiệm chứa khoảng (2; +∞) Tìm khẳng định A S = (−∞; 4) B S = (7; +∞) C S = [6; +∞) D S = (−∞; 5] Câu 45 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A B C −4 D 2i Câu 46 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A −1 ≤ m ≤ B m < −1 C −1 ≤ m < D m > √ Câu 47 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O √ đến mặt phẳng (S AB) √ B d = a C d = 2a D d = a A d = a Câu 48 Cho hàm số y = f (x) có đồ thị hình vẽ Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt A −4 ≤ m < −3 B −4 < m ≤ −3 C m > −4 D −4 < m < −3 Câu 49 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(−2; 5) B M(5; 2) C M(−5; −2) D M(5; −2) Câu 50 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (1; +∞) B (−1; 0) C (0; 1) D (−∞; 1) - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001

Ngày đăng: 07/04/2023, 10:34