Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng A ln a B ln 2[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Với a số thực dương tùy ý, ln(3a) − ln(2a) D ln 6a2 Câu Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A B 11 C D 12 A ln a B ln 32 C ln 32 Câu Tập nghiệm bất phương trình log(x − 2) > A (2; 3) B (3; +∞) C (−∞; 3) D (12; +∞) Câu Đồ thị hàm số có dạng đường cong hình bên? A y = x4 − 3x2 + B y = x2 − 4x + C y = x3 − 3x − D y = x−3 x−1 Câu Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 30◦ B 60◦ C 45◦ D 90◦ Câu Trong không gian Oxyz, cho đường thẳng d : x−1 = y−2 = −1 A M(2; −1; −2) B N(2; 1; 2) C P(1; 2; 3) z+3 −2 Điểm thuộc d? D Q(1; 2; −3) Câu Cho cấp số nhân (un ) với u1 = công bội q = 12 Giá trị u3 B 72 C D 41 A 21 Câu Cho số phức z = + 9i, phần thực số phức z2 A 36 B −77 C 85 D Câu Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A x5 − sin x + C B x5 + sin x + C C 5x5 + sin x + C D 5x5 − sin x + C Câu 10 Cân phân công ban tư môt tô 10 ban đê lam trưc nhât Hoi co cach phân công khac A 310 B A310 C C10 D 103 √ Câu 11 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 7; 3, 9)· B (3, 3; 3, 5)· C (3, 1; 3, 3)· D (3, 5; 3, 7)· R Câu 12 Biết f (x)dx = sin 3x + C Mệnh đề sau mệnh đề đúng? cos 3x cos 3x A f (x) = −3 cos 3x B f (x) = C f (x) = − D f (x) = cos 3x 3 2 Câu 13 Cho hàm số f (x) = − x + (2m + 3)x − (m + 3m)x + Có giá trị nguyên 3 tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A 16 B C D Câu 14 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A J(−3; 2; 7) B I(−1; −2; 3) C K(3; 0; 15) D H(−2; −1; 3) Trang 1/4 Mã đề 001 Câu 15 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A 3a B C D 2 Câu 16 Trên tập số phức, cho phương trình z + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 17 Cho α góc tạo hai đường thẳng ∆1 : 2x − 3y + = ∆2 : 3x + y − 14 = Giá trị cosa là: √ 3 −3 −3 B A √ C D √ 130 130 130 130 −−→ Câu 18 Trong mặt phẳng toạ độ Oxy, cho A(−3; 2), B(5; −1) Toạ độ vectơ AB là: A (−8; 3) B (−2; −1) C (8; −3) D (2; 1) Câu 19 Ví dụ sau ví dụ hoán vị? A Số cách chọn bạn nhóm 10 bạn B Số cách xếp hàng theo hàng dọc 10 bạn C Số cách chia 10 bạn vào hai nhóm D Số cách xếp hàng bạn nhóm 10 bạn → − Câu 20 Trong mặt phẳng cho 2010 điểm phân biệt Hỏi có vectơ khác có điểm đầu điểm cuối lấy từ 2010 điểm cho? A 167541284 B 4038090 C 4039137 D 4167114 −−→ −−→ Câu 21 Trong mặt phẳng toạ độ Oxy, cho ba điểm A(−1; 2), B(2; −2), C(3; 1) Toạ độ vectơ AB + BC là: A (−4; 1) B (4; 1) C (4; −1) D (−4; −1) Câu 22 Một lớp có 34 học sinh Hỏi có cách chọn 10 học sinh để tham gia hoạt động trồng trường? 34! 10! 10 A B A10 C C34 D 34 10! (34 − 10)! Câu 23 Số cách chia 10 học sinh thành ba nhóm có 2, 3, học sinh là: 2 A C10 + C53 + C22 B C10 · C83 · C55 C C10 + C10 + C10 D C10 + C83 + C55 Câu 24 Đường thẳng ∆ có vectơ phương − u→(12; −13) Vectơ sau vectơ pháp tuyến ∆? A − n→∆ (−13; 12) ∆ B − n→∆ (13; 12) C − n→∆ (12; 13) D − n→∆ (−12; −13) Câu 25 Có cách xếp sách Văn khác sách Toán khác kệ sách dài sách Văn phải xếp kề nhau? A 2.5!.7! B 5!.8! C 12! D 5!.7! Câu 26 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + B y = x3 − 2x2 + 3x + A y = x−1 C y = tan x D y = sin x x Câu 27 Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = −1 B y = C y = − D y = R R R R 2 Câu 28 Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A m < B −4 < m < C ∀m ∈ R + 2x x+1 D < m , Trang 2/4 Mã đề 001 −u (2; −2; 1), kết luận sau đúng? Câu 29 Trong không gian với hệ tọa độ Oxyz cho → → − → − −u | = −u | = √3 A | u | = B | u | = C |→ D |→ π x π π Tìm F( Câu 30 Biết F(x) nguyên hàm hàm số f (x) = F( ) = ) √ cos2 x π ln π π ln π π ln π π ln π B F( ) = − C F( ) = + D F( ) = − A F( ) = + 4 4 4 p Câu 31 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < y < −3 B Nếux > thìy < −15 C Nếu < x < π y > − 4π D Nếux = y = −3 Câu 32 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ 0; +∞) B S = (−∞; ln3) C S = (−∞; 2) D S = [ -ln3; +∞) Câu 33 Một mặt cầu có diện tích 4πR2 thể tích khối cầu B πR3 C πR3 D 4πR3 A πR3 Câu 34 Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A P = B max T = C P = −2016 D P = 2016 z Câu 35 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A B 2 C D Câu 36 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 C P = (|z| − 2)2 D P = (|z| − 4)2 B P = |z|2 − A P = |z|2 − Câu 38 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = B P = 34 + C P = 26 D P = + √ Câu 39 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm N B điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm Q D điểm P √ Câu 40 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2√ z2 z1 √ A B C D √ 2 Trang 3/4 Mã đề 001 √ 2 Mệnh đề Câu 42 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3√ √ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 3 Câu 43 Tìm đạo hàm hàm số: y = (x2 + 1) 1 1 − 3 2 A x B (2x) C 3x(x + 1) D (x + 1) 2 R3 Câu 44 Biết F(x) = x nguyên hàm hàm số f (x) R Giá trị [1 + f (x)]dx 32 A B 10 C Câu 45 Với a số thực dương tùy ý, log5 (5a) A − log5 a B + log5 a C − log5 a D 26 D + log5 a Câu 46 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M cho 3MA2 + 2MB2 − MC đạt giá trị nhỏ 3 3 A M(− ; ; 2) B M(− ; ; −1) C M(− ; ; −1) D M( ; ; −1) 4 4 Câu 47 Cho hàm số có bảng biến thiên: Khẳng định sau đúng? A Hàm số đạt cực đại B Hàm số đạt cực đại C Hàm số đạt cực đại D Hàm số đạt cực đại Câu 48 Cần chọn người công tác từ tổ có 30 người, số cách chọn A 330 B C30 C A330 D 10 Câu 49 Tính đạo hàm hàm số y = 2023 x A y′ = 2023 x ln 2023 B y′ = x.2023 x−1 C y′ = 2023 x ln x D y′ = 2023 x √ 2, OD = Câu 50 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB) √ √ A d = 2a B d = a C d = a D d = a - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001