Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π 3[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho khối nón có đình S , chiều cao thể tích 800π Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, √ khoảng cách từ tâm của√đường tròn đáy đến mặt24phẳng (S AB) C D B A 24 Câu Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Câu Trong khơng gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n1 = (−1; 1; 1) B → n4 = (1; 1; −1) C → n3 = (1; 1; 1) D → n2 = (1; −1; 1) Câu Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ A 2a B 22 a C 33 a D 3 a Câu R5 Cho hàm số f (x) = cos x + x Khẳng định đúng? R x2 B f (x)dx = − sin x + x2 + C A f (x)dx = − sin x + + C R R C f (x)dx = sin x + x2 + C D f (x)dx = sin x + x2 + C Câu Cho cấp số nhân (un ) với u1 = công bội q = 21 Giá trị u3 A 41 B 12 C 27 D Câu Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn B 359 C 71 D 18 A 354 35 Câu Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A 13 πr2 l B 2πrl C πrl D 32 πrl2 Câu Tính đạo hàm hàm số y = x 5x ′ B y′ = x ln A y = ln C y′ = x.5 x−1 D y′ = x Câu 10 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A B −3 C −2 D Câu 11 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a A a B 2a C D 2 R2 R2 Câu 12 Cho hàm số f (x) liên tục R ( f (x) + 2x) = Tính f (x) A B −9 C −1 D Câu 13 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón A S = πa2 B S = πa2 C S = πa2 D S = πa2 4 Trang 1/4 Mã đề 001 − → Câu 14 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 60 B 90 C 30◦ D 45◦ Câu 15 Cho khối lăng trụ đứng ABC.A′ B′C ′ √ có đáy ABC tam giác vuông cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 A B C D 6 2 Câu 16 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 B P = C P = D P = A P = 55 14 220 Câu 17 Trong mặt phẳng toạ độ Oxy, cho ⃗a = (2; −3), ⃗b = (−2; 5) Toạ độ vectơ −⃗a + 3⃗b là: A (−8; 18) B (8; 18) C (−8; −18) D (8; −18) −−→ −−→ Câu 18 Trong mặt phẳng toạ độ Oxy, cho ba điểm A(−1; 2), B(0; −2), C(3; 3) Toạ độ vectơ 2AB − BC là: A (14; 12) B (10; 28) C (−10; −28) D (−14; −12) Câu 19 Từ Hà Nội bay vào Đà Nẵng có chuyến bay trực tiếp ba hãng máy bay Hãng thứ cung cấp chuyến bay ngày Hãng thứ hai cung cấp chuyến bay ngày Hãng thứ ba cung cấp chuyến bay ngày Hỏi ngày có cách bay trực tiếp từ Hà Nội vào Đà Nẵng? A cách B cách C 16 cách D 12 cách Câu 20 Đội tuyển tốn có bạn nam bạn nữ Giáo viên phải chọn nhóm bốn bạn Hỏi giáo viên có cách chọn? 12! D C12 A A412 B 12! C 4! Câu 21 Tổng hệ số khai triển (x + 2)4 là: A 79 B 16 C 14 D 81 Câu 22 Giả sử ta dùng màu để tô cho nước khác đồ khơng có màu dùng hai lần Số cách để chọn màu cần dùng là: 5! 5! C D A 53 B 2! 3!2! Câu 23 Tổng hệ số khai triển (x + 2)4 là: A 16 B 81 C 14 D 79 Câu 24 Ví dụ sau ví dụ hốn vị? A Số cách xếp hàng theo hàng dọc 10 bạn B Số cách chọn bạn nhóm 10 bạn C Số cách xếp hàng bạn nhóm 10 bạn D Số cách chia 10 bạn vào hai nhóm Câu 25 Đội tuyển tốn có bạn nam bạn nữ Giáo viên phải chọn nhóm bốn bạn Hỏi giáo viên có cách chọn? 12! A 12! B C12 C D A412 4! Câu 26 Hàm số sau đồng biến R? √ √ A y = x2 B y = x2 + x + − x2 − x + C y = tan x D y = x4 + 3x2 + p Câu 27 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếu < x < y < −3 C Nếu < x < π y > − 4π2 D Nếux > thìy < −15 Trang 2/4 Mã đề 001 , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π A √ B 3π C D 3π 3 Câu 28 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu 29 Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > e2 B m > 2e C m > D m ≥ e−2 x Câu 30 Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = B y = −1 C y = D y = − R R R R 2 Câu 31 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = [ 0; +∞) C S = [ -ln3; +∞) D S = (−∞; ln3) Câu 32 Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A ∀m ∈ R B m < C −4 < m < + 2x x+1 D < m , Câu 33 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (0; 2) B m ∈ (−1; 2) C m ≥ D −1 < m < Câu 34 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm S B điểm P bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm Q D điểm R Câu 35 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = B P = −2016 C P = 2016 D max T = Câu 36 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 37 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp!nào sau đây? ! ! 9 1 A ; B ; +∞ C 0; D ; 4 4 Câu 38 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 22016 B 21008 C −22016 D −21008 Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ A B C D √ 2 Trang 3/4 Mã đề 001 √ điểm A hình vẽ bên điểm Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm P C điểm Q D điểm N Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 B P = |z|2 − C P = (|z| − 4)2 D P = |z|2 − A P = (|z| − 2)2 Câu 42 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số thực không dương B |z| = C Phần thực z số âm D z số ảo Câu 43 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : y z−2 x+1 = = Viết 1 phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : y + z − = B (P) : x − 2y + = C (P) : y − z + = D (P) : x − 2z + = π R4 Câu 44 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 + 16π − 16 π2 − π2 + 16π − π2 + 15π A B C D 16 16 16 16 Câu 45 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A x = B x = −2 C M(1; −2) D M(−2; −4) Câu 46 Gọi S tập hợp tất giá trị tham số m để bất phương trình log3 (x2 − 5x + m) > log3 (x − 2) có tập nghiệm chứa khoảng (2; +∞) Tìm khẳng định A S = [6; +∞) B S = (−∞; 5] C S = (−∞; 4) D S = (7; +∞) Câu 47 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (−1; 0) B (1; +∞) C (−∞; 1) D (0; 1) Câu 48 Thể tích khối lập phương có cạnh 3a là: A 2a3 B 8a3 C 27a3 D 3a3 Câu 49 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 1) −n = (2; 3; −4) −n = (2; −3; 4) −n = (−2; 3; 4) A → B → C → D → Câu 50 Số phức z = − 3i có phần ảo A −3 B 3i C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001