Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian 0xyz, cho mặt cầu (S ) x2 + y2 + z2 − 2x − 4y −[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (2; 4; 6) B (1; 2; 3) C (−2; −4; −6) D (−1; −2; −3) Câu Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: B y′ = − x ln1 C y′ = x ln1 A y′ = lnx3 D y′ = 1x Câu Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n4 = (1; 1; −1) B → n2 = (1; −1; 1) C → n1 = (−1; 1; 1) D → n3 = (1; 1; 1) Câu Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 90◦ B 30◦ C 60◦ D 45◦ R4 R4 R4 Câu Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A B −1 C D Câu Với a số thực dương tùy ý, ln(3a) − ln(2a) C ln a A ln 6a2 B ln 23 D ln 32 Câu Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn |z + 2i| = đường tròn Tâm đường trịn có tọa độ A (−2; 0) B (0; 2) C (0; −2) D (2; 0) Câu Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d > R B d = R C d < R D d = Câu Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −8 B −6 C −2 D −4 1 Câu 10 Cho hàm số f (x) = − x3 + (2m + 3)x2 − (m2 + 3m)x + Có giá trị nguyên 3 tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B 16 C D − → Câu 11 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 30 B 60 C 45◦ D 90◦ Câu 12 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B C D Câu 13 Đường cong hình bên đồ thị hàm số bốn hàm số liệt kê bốn phương án Hỏi hàm số hàm số nào? A B C D Câu 14 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón B S = πa2 C S = πa2 D S = πa2 A S = πa2 4 Trang 1/4 Mã đề 001 Câu 15 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 18 B 12 C 27 D 21 Câu 16 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D −−→ −−→ Câu 17 Trong mặt phẳng toạ độ Oxy, cho ba điểm A(−1; 2), B(0; −2), C(3; 3) Toạ độ vectơ 2AB − BC là: A (−14; −12) B (10; 28) C (14; 12) D (−10; −28) Câu 18 Cho tập hợp A = {1; 2; 3; 4; 5; 6; 7} Hỏi có cách lập số có ba chữ số khác từ chữ số thuộc tập hợp A? D A37 C C73 B A47 A C74 → − Câu 19 Trong mặt phẳng cho 2010 điểm phân biệt Hỏi có vectơ khác có điểm đầu điểm cuối lấy từ 2010 điểm cho? A 4039137 B 4167114 C 167541284 D 4038090 Câu 20 Trong mặt phẳng toạ độ Oxy, cho ⃗a = (1; 2), ⃗b = (3; −3) Toạ độ vectơ ⃗c = 3⃗a − 2⃗b là: A (9; 0) B (−3; 0) C (−3; 12) D (3; 12) −−→ −−→ Câu 21 Trong mặt phẳng toạ độ Oxy, cho ba điểm A(−1; 2), B(0; −2), C(3; 3) Toạ độ vectơ 2AB − BC là: A (−14; −12) B (10; 28) C (−10; −28) D (14; 12) Câu 22 Một vectơ pháp tuyến đường thẳng ∆ : y = 2x + là: A − n→∆ (1; 1) B − n→∆ (1; −1) C − n→∆ (−2; −1) D − n→∆ (2; −1) Câu 23 Trong mặt phẳng toạ độ Oxy, cặp vectơ sau có phương? A ⃗a = (− ; 2) ⃗b = (2; −6) B ⃗u = (2; 1) ⃗v = (2; −6) √3 √ C ⃗c = ( 2; 2) d⃗ = (2; 2) D = (1; −1) = (3; 3) Câu 24 Nam muốn tơ màu cho hình vng hình trịn Biết tơ màu xanh, màu đỏ màu vàng cho hình vng, tơ màu hồng màu tím cho hình trịn Hỏi Nam có cách tơ màu cho hai hình? A cách B cách C cách D cách −−→ Câu 25 Trong mặt phẳng toạ độ Oxy, cho A(3; −2) Toạ độ vectơ OA là: A (−3; 2) B (2; −3) C (3; −2) D (−2; 3) Câu 26 Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 60a3 B 30a3 C 20a3 D 100a3 √ x Câu 27 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H1) B (H2) C (H4) D (H3) Câu 28 Cho√ hai số thực a, bthỏa mãn a > b > Kết luận √ √ √5 sau sai? − √3 √5 2 a b A a > b B e > e C a < b D a < b− Câu 29 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 2πR3 B 6πR3 C πR3 D 4πR3 Câu 30 Bất đẳng thức sau đúng? −e A 3√ > 2−e √ e π C ( − 1) < ( − 1) √ √ π e B ( + 1) > ( + 1) D 3π < 2π Trang 2/4 Mã đề 001 Câu 31 Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường elip B Đường parabol C Đường hypebol D Đường trịn Câu 32 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: q √ √ 2− 2 b 3a2 a a 3b − a A VS ABC = B VS ABC = 12 √ 212 √ 3a b 3ab2 C VS ABC = D VS ABC = 12 12 ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu 33 Cho hàm số y = cx + d A bc > B ad > C ac < D ab < Câu 34 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = −1 B A = C A = + i D A = √ Câu 35 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P B điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm N D điểm Q √ Giá trị lớn biểu thức Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 + z + z2 Câu 37 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 2z − i Câu 38 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| > B |A| < C |A| ≥ D |A| ≤ Câu 39 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 √ 2 Câu 40 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ 2 2 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 41 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 42 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn của√biểu thức P = |z1 | + |z √2 | √ √ A P = + B P = 26 C P = D P = 34 + Trang 3/4 Mã đề 001 Câu 43 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+1 y z−2 = = Viết 1 phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : y + z − = B (P) : y − z + = C (P) : x − 2z + = D (P) : x − 2y + = Câu 44 Tập nghiệm bất phương trình log3 (10 − x+1 ) ≥ − x chứa số nguyên A B C D Vô số Câu 45 Cần chọn người công tác từ tổ có 30 người, số cách chọn A 330 B 10 C A330 D C30 Câu 46 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 A V = 3a3 B V = C V = 2a3 D V = a3 Câu 47 Với a số thực dương tùy ý, log5 (5a) A + log5 a B + log5 a C − log5 a D − log5 a Câu 48 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A x − 2y − 2z − = B x + 2y + 2z + = C −x + 2y + 2z + = D 3x − 4y + 6z + 34 = Câu 49 Hình chópS ABC có đáy tam giác vng B có AB = a, AC = 2a, S A vng góc với mặt phẳng đáy, S A = 2a Gọi φ góc φ =? √ tạo hai mặt phẳng√(S AC), (S BC) Tính cos√ 3 15 B C D A 2 5 Câu 50 Biết phương trình log22 x − 7log2 x + = có nghiệm x1 , x2 Giá trị x1 x2 A 64 B 512 C D 128 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001