Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hàm số f (x) = cos x + x Khẳng định nào dưới đây đúng? A ∫ f[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu R1 Cho hàm số f (x) = cos x + x Khẳng định đúng? R x2 A f (x)dx = − sin x + + C B f (x)dx = sin x + x2 + C R R C f (x)dx = − sin x + x2 + C D f (x)dx = sin x + x2 + C Gọi A B hai điểm thuộc Câu Cho khối nón có đình S , chiều cao thể tích 800π đường√ trịn đáy cho AB = 12, khoảng cách từ tâm của√đường tròn đáy đến mặt phẳng (S AB) B 245 C D 245 A Câu Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+ x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A 34 B 14 C 21 D 52 Câu Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A B 15 C D 17 Câu Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (2; 3) B (4; 5) C (6; 7) D (3; 4) Câu Xét số phức z thỏa mãn z2 − − 4i = 2|z| Gọi M m giá trị lớn giá trị nhỏ của√ |z| Giá trị M + m2 √ B 14 C 18 + A 11 + i R2 R2h Câu Nếu f (x)dx = 21 f (x) − dx A B C D 28 D −2 Câu Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox A 169 B 16 C 16π D 16π 15 15 z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu Cho số phức zthỏa mãn i + trịn (C) Tính bán kính rcủa đường trịn (C) √ √ A r = B r = C r = D r = Câu 10 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A −1 B −7 C D Câu 11 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (0 ; +∞) B (−1 ; 4) C (−2 ; 0) D (−∞ ; −2) Câu 12 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 512π 22π 7π A V = B V = C V = D V = 15 Câu 13 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) C D A 3a B Trang 1/4 Mã đề 001 Câu 14 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (1; −4) B (0; −3) C (−1; −4) D (−3; 0) x−2 y x−1 Câu 15 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 A (2 ; −3 ; 1) B ( ; − ; ) C ( ; − ; ) D ( ; − ; ) 3 3 3 3 ′ ′ ′ Câu 16 Cho khối lăng trụ đứng ABC.A B C √ có đáy ABC tam giác vuông cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 A B C D 2 Câu 17 Một vectơ pháp tuyến đường thẳng ∆ : y = 2x + là: A − n→∆ (1; 1) B − n→∆ (2; −1) C − n→∆ (1; −1) D − n→∆ (−2; −1) Câu 18 Một lớp có 34 học sinh Hỏi có cách chọn 10 học sinh để tham gia hoạt động trồng trường? 34! 10! 10 B A10 C C34 D A 34 (34 − 10)! 10! −−→ Câu 19 Trong mặt phẳng toạ độ Oxy, cho A(3; −2) Toạ độ vectơ OA là: A (3; −2) B (2; −3) C (−3; 2) D (−2; 3) Câu 20 Trong mặt phẳng toạ độ Oxy, toạ độ vectơ 2⃗i − 7⃗j là: A (2; −7) B (−2; 7) C (2; 7) D (−7; 2) Câu 21 Hệ số x3 khai triển (2x + 1)4 là: A B 10 C D 32 Câu 22 Có cách xếp sách Văn khác sách Toán khác kệ sách dài sách Văn phải xếp kề nhau? A 5!.8! B 5!.7! C 2.5!.7! D 12! Câu 23 Ví dụ sau ví dụ hốn vị? A Số cách xếp hàng bạn nhóm 10 bạn B Số cách xếp hàng theo hàng dọc 10 bạn C Số cách chọn bạn nhóm 10 bạn D Số cách chia 10 bạn vào hai nhóm Câu 24 Trong mặt phẳng toạ độ Oxy, cặp vectơ sau có phương? √ √ A ⃗a = (− ; 2) ⃗b = (2; −6) B ⃗c = ( 2; 2) d⃗ = (2; 2) C ⃗u = (2; 1) ⃗v = (2; −6) D = (1; −1) = (3; 3) Câu 25 Cho α góc tạo hai đường thẳng ∆1 : 2x − 3y + = ∆2 : 3x + y − 14 = Giá trị cosa là: √ −3 −3 3 A B √ C D √ 130 130 130 130 đúng? x B Hàm số nghịch biến R D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu 26 Kết luận sau tính đơn điệu hàm số y = A Hàm số đồng biến R C Hàm số nghịch biến (0; +∞) Câu 27 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≥ B m > C m < D m ≤ Trang 2/4 Mã đề 001 Câu 28 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = −1+ B y = +1− ln ln 5 ln ln x x C y = − D y = + ln ln 5 ln Câu R29 Công thức sai? R A R e x = e x + C B R a x = a x ln a + C C cos x = sin x + C D sin x = − cos x + C Câu 30 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 5; 0) C (0; 1; 0) D (0; 0; 5) Câu 31 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = − 4t B x = + 2ty = + tz = C x = + ty = + 2tz = D x = + 2ty = + tz = Câu 32 Một mặt cầu có diện tích 4πR2 thể tích khối cầu D πR3 A 4πR3 B πR3 C πR3 Câu 33 Cho mãn a√> b > Kết luận sau sai? √ √ √ √5 hai số thực a, bthỏa √5 − A a < b B a < b− C ea > eb D a > b Câu 34 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 85 97 B T = 13 D T = 13 A T = C T = 3 Câu 35 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A |z| = B z số thực không dương C Phần thực z số âm D z số ảo √ i Giá trị (a + bz + cz2 )(a + bz2 + cz) Câu 36 Cho a, b, c số thực z = − + 2 A a2 + b2 + c2 + ab + bc + ca B a + b + c 2 C a + b + c − ab − bc − ca D √ Câu 37 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P B điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm Q Câu 38 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D điểm N D Câu 39 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | Câu 40 Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A P = −2016 B max T = C P = 2016 D P = Trang 3/4 Mã đề 001 Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B C √ D 2 z Câu 42 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ √ M = |z + − i| B 2 C D A Câu 43 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 A V = a3 B V = 2a3 C V = 3a3 D V = 3 Câu 44 Tìm đạo hàm hàm số: y = (x + 1) 1 1 − 3 A (x + 1) B 3x(x2 + 1) C x D (2x) 3 R R R Câu 45 Biết f (x)dx = g(x)dx = Khi [ f (x) + g(x)]dx A −2 B C D Câu 46 Biết phương trình log22 x − 7log2 x + = có nghiệm x1 , x2 Giá trị x1 x2 A 512 B 64 C 128 D Câu 47 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(1; −2; 3); R = B I(−1; 2; −3); R = C I(1; 2; −3); R = D I(1; 2; 3); R = Câu 48 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (−1; 0) B (0; 1) C (1; +∞) D (−∞; 1) √ Câu 49 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ √ A (x − 4)2 + (y + 8)2 = B (x + 4)2 + (y − 8)2 = C (x + 4)2 + (y − 8)2 = 20 D (x − 4)2 + (y + 8)2 = 20 Câu 50 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(−5; −2) B M(−2; 5) C M(5; 2) D M(5; −2) - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001