Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đ[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho khối lập phương có cạnh Thể tích khối lập phương cho A B 83 C D Câu Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A 17 B 15 C D Câu Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ A a D 22 a B 3 a C 2a Câu Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 30◦ B 60◦ C 45◦ D 90◦ Câu Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A 12 B 11 C D Câu Cho khối nón có đình S , chiều cao thể tích 800π Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt √ phẳng (S AB) √ 24 B C 24 D A Câu Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho D 23 πrl2 A 2πrl B πrl C 31 πr2 l Câu Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox A 16 B 169 C 16π D 16π 15 15 Câu Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A −192 B 384 C 192 D −384 Câu 10 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A −7 B −1 C D Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) cắt mặt cầu (S ) B (P) qua tâm mặt cầu (S ) C (P) không cắt mặt cầu (S ) D (P) tiếp xúc mặt cầu (S ) 2 Câu 12 Cho hàm số f (x) = − x + (2m + 3)x − (m + 3m)x + Có giá trị nguyên 3 tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B 16 C D Câu 13 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (−3; 0) B (−1; −4) C (1; −4) D (0; −3) Câu 14 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 18 B 13 C 17 D 20 Trang 1/4 Mã đề 001 Câu 15 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 64 B 56 C 48 D 76 √ Câu 16 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 5; 3, 7)· B (3, 7; 3, 9)· C (3, 3; 3, 5)· D (3, 1; 3, 3)· Câu 17 Một lớp có 34 học sinh Hỏi có cách chọn 10 học sinh để tham gia hoạt động trồng trường? 34! 10! 10 A B C34 C D A10 34 10! (34 − 10)! Câu 18 Có ngựa chạy đua Hỏi có kết xảy ra? Biết khơng có hai ngựa vể đích lúc A A25 B C52 C 2! D 5! Câu 19 Phương trình tổng quát đường thẳng ∆ qua điểm M(x0 ; y0 ) có vectơ pháp tuyến ⃗n(a; b) là: x − x0 y − y0 = B a(x − x0 ) + b(y − y0 ) = A a b C a(x + x0 ) + b(y + y0 ) = D b(x − x0 ) − a(y − y0 ) = Câu 20 Một vectơ pháp tuyến đường thẳng ∆ : y = 2x + là: A − n→∆ (1; −1) B − n→∆ (−2; −1) C − n→∆ (2; −1) D − n→∆ (1; 1) Câu 21 Có cách chọn hai học sinh từ nhóm gồm 10 học sinh? A 210 B 102 C C10 D A210 Câu 22 Tổng hệ số khai triển (x + 2)4 là: A 81 B 79 C 14 D 16 Câu 23 Tổng hệ số khai triển (x + 2)4 là: A 16 B 14 C 79 D 81 −−→ Câu 24 Trong mặt phẳng toạ độ Oxy, cho A(−3; 2), B(5; −1) Toạ độ vectơ AB là: A (8; −3) B (−8; 3) C (−2; −1) D (2; 1) Câu 25 Trong mặt phẳng toạ độ Oxy, cho hai đường thẳng ∆1 : x − 2y + = 0, ∆2 : 3x − y + = Nhận định sau đúng? A Hai đường thẳng ∆1 ∆2 cắt B Hai đường thẳng ∆1 ∆2 vng góc với C Hai đường thẳng ∆1 ∆2 trùng D Hai đường thẳng ∆1 ∆2 song song với Câu 26 Hình nón có bán kính đáy √ R, đường sinh l diện √ tích xung quanh C π l2 − R2 D 2πRl A πRl B 2π l2 − R2 Câu 27 Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > e2 B m > C m ≥ e−2 D m > 2e Câu 28 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≤ B m ≥ C m > D m < Câu 29 Số nghiệm phương trình x + 5.3 x − = A B C D Câu 30 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? Trang 2/4 Mã đề 001 A x = + ty = + 2tz = C x = + 2ty = + tz = − 4t B x = + 2ty = + tz = D x = + 2ty = + tz = Rm dx theo m? + 3x + m+2 m+1 m+2 2m + ) B I = ln( ) C I = ln( ) D I = ln( ) A I = ln( m+2 2m + m+2 m+1 Câu 32 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(6; 21; 21) B C(8; ; 19) C C(20; 15; 7) D C(6; −17; 21) Câu 33 Một mặt cầu có diện tích 4πR2 thể tích khối cầu C πR3 D πR3 A 4πR3 B πR3 √ Câu 34 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A |z| < B |z| > C ≤ |z| ≤ D < |z| < 2 2 Câu 35 Cho số phức z thỏa mãn |z − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 √ Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z √ + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 37 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = + i B A = −1 C A = D A = Câu 31 Cho số thực dươngm Tính I = x2 Câu 38 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = Câu 39 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −22016 B −21008 C 21008 D 22016 Câu 40 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp sau đây? ! ! ! 9 A ; B 0; C ; +∞ D ; 4 4 Câu 41 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | Câu 42 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C 2 D Câu 43 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị R3 [1 + f (x)]dx A 26 B 32 C 10 D Trang 3/4 Mã đề 001 Câu 44 Thể tích khối lập phương có cạnh 3a là: A 3a3 B 8a3 C 2a3 D 27a3 Câu 45 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A M(1; −2) B M(−2; −4) C x = −2 D x = Câu 46 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (2; −3; 4) −n = (2; 3; −4) −n = (−2; 3; 1) −n = (−2; 3; 4) A → B → C → D → Câu 47 Gọi S tập hợp tất giá trị tham số m để bất phương trình log3 (x2 − 5x + m) > log3 (x − 2) có tập nghiệm chứa khoảng (2; +∞) Tìm khẳng định A S = [6; +∞) B S = (7; +∞) C S = (−∞; 4) D S = (−∞; 5] π R4 Câu 48 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 + 16π − π2 − π2 + 16π − 16 π2 + 15π A B C D 16 16 16 16 Câu 49 Cho hàm số có bảng biến thiên: Khẳng định sau đúng? A Hàm số đạt cực đại B Hàm số đạt cực đại C Hàm số đạt cực đại D Hàm số đạt cực đại Câu 50 Trong số phức z thỏa mãn z − i = z¯ − − 3i Hãy tìm z có môđun nhỏ 27 6 27 27 B z = + i C z = − i D z = − − i A z = − + i 5 5 5 5 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001