Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian Oxyz, cho hai điểm M(1;−1;−1) và N(5; 5; 1) Đườn[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Câu Cho hàm số f (x) liên tục R Gọi R 2F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx B C D 23 A 43 Câu Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho B πrl C 32 πrl2 D 2πrl A 13 πr2 l Câu R4 Cho hàm số f (x) = cos x + x Khẳng định đúng? R A f (x)dx = − sin x + x2 + C B f (x)dx = − sin x + x2 + C R R D f (x)dx = sin x + x2 + C C f (x)dx = sin x + x2 + C Câu Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; 2; −3) B (−1; 2; 3) C (−1; −2; −3) D (1; −2; 3) Câu Tích tất nghiệm phương trình ln2 x + ln x − = A −3 B e13 C −2 D e12 Câu Xét số phức z thỏa mãn z2 − − 4i = 2|z| Gọi M m giá trị lớn giá trị nhỏ của√ |z| Giá trị M + m2√bằng B 18 + A 11 + C 28 Câu Tập nghiệm bất phương trình log(x − 2) > A (12; +∞) B (2; 3) C (3; +∞) D 14 D (−∞; 3) Câu Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2021 B 2019 C 2022 D 2020 Câu 10 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A B 3a C D y x−1 x−2 Câu 11 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 A ( ; − ; ) B ( ; − ; ) C (2 ; −3 ; 1) D ( ; − ; ) 3 3 3 3 Câu 12 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 7π 512π 22π A V = B V = C V = D V = 15 ◦ Câu 13 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120 Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 18 B 21 C 27 D 12 Trang 1/4 Mã đề 001 Câu 14 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (−1 ; 4) B (−∞ ; −2) C (0 ; +∞) D (−2 ; 0) Câu 15 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho đồng biến khoảng (1; 4) B Hàm số cho nghịch biến khoảng (3; +∞) C Hàm số cho nghịch biến khoảng (1; 4) D Hàm số cho đồng biến khoảng (−∞; 3) Câu 16 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 56 B 76 C 64 D 48 Câu 17 Cho α góc tạo hai đường thẳng ∆1 : 2x − 3y + = ∆2 : 3x + y − 14 = Giá trị cosa là: √ −3 3 −3 B √ C √ D A 130 130 130 130 Câu 18 Hệ số x3 khai triển (2x + 1)4 là: A B 32 C D 10 −−→ Câu 19 Trong mặt phẳng toạ độ Oxy, cho A(−3; 2), B(5; −1) Toạ độ vectơ AB là: A (−2; −1) B (8; −3) C (−8; 3) D (2; 1) −−→ Câu 20 Trong mặt phẳng toạ độ Oxy, cho A(−3; 2), B(5; −1) Toạ độ vectơ AB là: A (2; 1) B (8; −3) C (−2; −1) D (−8; 3) Câu 21 Trong mặt phẳng toạ độ Oxy, cho ⃗a = (2; −3), ⃗b = (−2; 5) Toạ độ vectơ −⃗a + 3⃗b là: A (−8; −18) B (8; −18) C (−8; 18) D (8; 18) Câu 22 Một lớp có 34 học sinh Hỏi có cách chọn 10 học sinh để tham gia hoạt động trồng trường? 34! 10! 10 D A A10 B C34 C 34 (34 − 10)! 10! Câu 23 Có cách chọn hai học sinh từ nhóm gồm 10 học sinh? A 102 B A210 C C10 D 210 −−→ Câu 24 Trong mặt phẳng toạ độ Oxy, cho A(3; −2) Toạ độ vectơ OA là: A (−3; 2) B (2; −3) C (−2; 3) D (3; −2) Câu 25 Có ngựa chạy đua Hỏi có kết xảy ra? Biết khơng có hai ngựa vể đích lúc A A25 B 5! C C52 D 2! dx theo m? + 3x + m+2 2m + B I = ln( ) C I = ln( ) 2m + m+2 Câu 26 Cho số thực dươngm Tính I = x2 m+1 ) m+2 p Câu 27 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếu < x < y < −3 C Nếu < x < π y > − 4π D Nếux > thìy < −15 A I = ln( m+2 ) m+1 Rm D I = ln( Câu 28 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; −3; −1) B M ′ (−2; 3; 1) C M ′ (−2; −3; −1) D M ′ (2; 3; 1) Trang 2/4 Mã đề 001 Câu 29 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = −x4 + 3x2 − 2 C y = x − 2x + D y = x3 Câu 30 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số nghịch biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số nghịch biến (0; +∞) Câu 31 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = [ -ln3; +∞) C S = [ 0; +∞) D S = (−∞; ln3) Câu 32 Hàm số sau khơng có cực trị? A y = x4 + 3x2 + C y = cos x B y = x2 D y = x3 − 6x2 + 12x − Câu 33 thức sau đúng? √ √ √ √ Bất đẳng π e e π B ( − 1) < ( − 1) A ( + 1) > ( + 1) C 3−e > 2−e D 3π < 2π Câu 34 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ B 13 C D A √ Câu 35 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z √ + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = Câu 36 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 2)2 B P = |z|2 − C P = (|z| − 4)2 D P = |z|2 − √ √ √ 42 √ Câu 38 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z B < |z| < C < |z| < D < |z| < A < |z| < 2 2 Câu 39 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 √ Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm Q B điểm N bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm M Câu 41 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 21008 B −22016 C −21008 D 22016 Trang 3/4 Mã đề 001 Câu 42 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ 97 85 B T = C T = 13 A T = D T = 13 3 Câu 43 Cần chọn người cơng tác từ tổ có 30 người, số cách chọn A 10 B A330 C 330 D C30 Câu 44 Cho cấp số nhân (un ) với u1 = − ; u7 = −32 Tìm q? A q = ± B q = ±4 C q = ±2 D q = ±1 Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm −−→ −−→ −−→ tọa độ điểm M thỏa mãn OM = 2AB − AC A M(−2; −6; 4) B M(−2; 6; −4) C M(2; −6; 4) D M(5; 5; 0) Câu 46 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M cho 3MA2 + 2MB2 − MC đạt giá trị nhỏ 3 3 B M(− ; ; −1) C M( ; ; −1) D M(− ; ; −1) A M(− ; ; 2) 4 4 2 Câu 47 Cho hình phẳng D giới hạn đường y = (x − 2) , y = 0, x = 0, x = Khối tròn xoay tạo thành quay D quạnh trục hồnh tích V bao nhiêu? 32π 32 32 C V = D V = A V = 32π B V = 5π 5 Câu 48 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (−1; 0) B (1; +∞) C (0; 1) D (−∞; 1) Câu 49 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh hình trụ A 4πa2 B 6πa2 C 5πa2 D 2πa2 Câu 50 Cho hàm số có bảng biến thiên: Khẳng định sau đúng? A Hàm số đạt cực đại C Hàm số đạt cực đại B Hàm số đạt cực đại D Hàm số đạt cực đại - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001