Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Nếu ∫ 4 −1 f (x)dx = 2 và ∫ 4 −1 g(x)dx = 3 thì ∫ 4 −1 [ f (x) +[.]
Đề minh họa LATEX ĐỀ THI MINH HỌA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Nếu A R4 −1 R4 f (x)dx = −1 g(x)dx = B R4 [ f (x) + g(x)]dx C −1 D −1 Câu Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ D 22 a A a B 33 a C 2a Câu Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d < R B d = C d = R D d > R Câu R4 Cho hàm số f (x) = cos x + x Khẳng định đúng? R A f (x)dx = sin x + x2 + C B f (x)dx = − sin x + x2 + C R R C f (x)dx = − sin x + x2 + C D f (x)dx = sin x + x2 + C Gọi A B hai điểm thuộc Câu Cho khối nón có đình S , chiều cao thể tích 800π đường√ trịn đáy cho AB = 12, khoảng cách từ tâm của√đường tròn đáy đến mặt phẳng (S AB) A B 245 D 245 C Câu Tập nghiệm bất phương trình x+1 < A (1; +∞) B [1; +∞) C (−∞; 1] D (−∞; 1) Câu Cho khối lăng trụ đứng ABC · A′ B′C ′ √có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ B 62 a3 C 22 a3 D 2a3 A 42 a3 Câu Cho hàm số f (x) liên tục R Gọi R 2F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx A 43 B 32 C D Câu Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B C D √ Câu 10 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 3; 3, 5)· B (3, 7; 3, 9)· C (3, 5; 3, 7)· D (3, 1; 3, 3)· Câu 11 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 27 B 21 C 18 D 12 − Câu 12 Đạo hàm hàm số y = (2x + 1) tập xác định 4 − − A − (2x + 1) B − (2x + 1) 3 1 − − C 2(2x + 1) ln(2x + 1) D (2x + 1) ln(2x + 1) Trang 1/4 Mã đề 001 Câu 13 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A I(−1; −2; 3) B J(−3; 2; 7) C H(−2; −1; 3) D K(3; 0; 15) Câu 14 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; 2; 3) −n = (1; 3; −2) −n = (1; −2; 3) −n = (1; −2; −1) A → B → C → D → Câu 15 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 76 B 56 C 64 D 48 Câu 16 Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A −384 B 192 C −192 D 384 Câu 17 Một vectơ pháp tuyến đường thẳng ∆ : y = 2x + là: A − n→∆ (1; 1) B − n→∆ (1; −1) C − n→∆ (2; −1) D − n→∆ (−2; −1) −−→ Câu 18 Trong mặt phẳng toạ độ Oxy, cho A(−3; 2), B(5; −1) Toạ độ vectơ AB là: A (−2; −1) B (2; 1) C (8; −3) D (−8; 3) −−→ Câu 19 Trong mặt phẳng toạ độ Oxy, cho A(3; −2) Toạ độ vectơ OA là: A (−2; 3) B (−3; 2) C (2; −3) D (3; −2) Câu 20 Trong mặt phẳng toạ độ Oxy, cho hai đường thẳng ∆1 : x − 2y + = 0, ∆2 : 3x − y + = Nhận định sau đúng? A Hai đường thẳng ∆1 ∆2 song song với B Hai đường thẳng ∆1 ∆2 cắt C Hai đường thẳng ∆1 ∆2 trùng D Hai đường thẳng ∆1 ∆2 vng góc với −−→ −−→ Câu 21 Trong mặt phẳng toạ độ Oxy, cho ba điểm A(−1; 2), B(0; −2), C(3; 3) Toạ độ vectơ 2AB − BC là: A (14; 12) B (−10; −28) C (10; 28) D (−14; −12) → − Câu 22 Trong mặt phẳng cho 2010 điểm phân biệt Hỏi có vectơ khác có điểm đầu điểm cuối lấy từ 2010 điểm cho? A 4039137 B 4167114 C 167541284 D 4038090 Câu 23 Một lớp có 34 học sinh Hỏi có cách chọn 10 học sinh để tham gia hoạt động trồng trường? 34! 10! 10 C D C34 A A10 B 34 (34 − 10)! 10! Câu 24 Hệ số x2 khai triển (2x − 3)4 là: A 16 B −216 C 216 D −16 Câu 25 Một quán ăn phục vụ ăn vặt loại nước uống Hỏi bạn Mai có cách để gọi ăn loại nước uống? A 10 cách B cách C cách D cách Câu 26 Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 300 B 600 C 450 D 360 Câu 27 Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > B m > e2 C m ≥ e−2 D m > 2e Trang 2/4 Mã đề 001 Câu 28 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 D C(20; 15; 7) A C(6; −17; 21) B C(6; 21; 21) C C(8; ; 19) Câu R29 Kết đúng? A sin2 x cos x = cos2 x sin x + C R sin3 x C sin2 x cos x = − + C sin2 x cos x = −cos2 x sin x + C R sin3 x D sin2 x cos x = + C B R Câu 30 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m > B m ≤ C m ≥ D m < Câu 31 Hàm số sau đồng biến R? A y = x√4 + 3x2 + √ C y = x2 + x + − x2 − x + B y = tan x D y = x2 Câu 32 Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C πR3 D 4πR3 Câu 33 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ 0; +∞) B S = (−∞; 2) C S = [ -ln3; +∞) D S = (−∞; ln3) Câu 34 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = + i C A = D A = −1 Câu 35 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? ! ! ! ! 9 A ; +∞ B ; C ; D 0; 4 4 z Câu 36 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A 2 B C D Câu 37 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ 97 85 B T = D T = A T = 13 C T = 13 3 √ √ √ 42 √ Câu 38 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 √ Câu 39 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm N D điểm P Trang 3/4 Mã đề 001 Câu 40 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm S B điểm Q bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm R D điểm P Câu 41 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A 18 B C D Câu 42 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B 13 C D Câu 43 Cho lăng trụ đứng ABC.A′ B′C ′ có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng 600 Biết diện tích tam giác ∆A′ BC 2a2 Tính thể tích V khối lăng trụ ABC.A′ B′C ′ √ √ 2a3 a3 A V = B V = a3 C V = D V = 3a3 3 Câu 44 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh hình trụ A 2πa2 B 5πa2 C 4πa2 D 6πa2 Câu 45 Gọi S tập hợp tất giá trị tham số m để bất phương trình log3 (x2 − 5x + m) > log3 (x − 2) có tập nghiệm chứa khoảng (2; +∞) Tìm khẳng định A S = (7; +∞) B S = (−∞; 5] C S = [6; +∞) D S = (−∞; 4) z x−1 y+2 = = không qua điểm đây? Câu 46 Đường thẳng (∆) : −1 A (3; −1; −1) B A(−1; 2; 0) C (−1; −3; 1) D (1; −2; 0) Câu 47 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A B 2i C −4 D Câu 48 Cho cấp số nhân (un ) với u1 = − ; u7 = −32 Tìm q? A q = ±2 B q = ±1 C q = ± D q = ±4 −a = (4; −6; 2) Phương Câu 49 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = −2 + 4ty = −6tz = + 2t B x = −2 + 2ty = −3tz = + t C x = + 2ty = −3tz = −1 + t D x = + 2ty = −3tz = + t Câu 50 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số nguyên dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001