Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + ty = + 2tz = B x = + 2ty = + tz = C x = + 2ty = + tz = − 4t D x = + 2ty = + tz = Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 360 B 600 C 300 D 450 Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 D A −6 B C Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > e2 B m ≥ e−2 C m > 2e D m > Câu Hàm số sau đồng biến R? √ √ A y = x4 + 3x2 + B y = x2 + x + − x2 − x + C y = tan x D y = x2 x tập xác định Câu Giá trị nhỏ hàm số y = x +1 1 A y = −1 B y = C y = − D y = R R R R 2 m R dx Câu Cho số thực dươngm Tính I = theo m? x + 3x + m+1 m+2 2m + m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 2m + m+2 m+1 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 3a 5a 2a a A √ B C D √ 5 Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 A (m ) B (m ) C 3(m2 ) D (m2 ) Câu 10 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B C π D −1 Câu 11 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 4m2 − m2 − 12 m2 − m2 − 12 A B C D 2m m 2m 2m 2x + 2017 Câu 12 Cho hàm số y = (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = Trang 1/5 Mã đề 001 B Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng C Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 D Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng Câu 13 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 C − D A B 6 R Câu 14 Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = F(2x − 1) + C B f (2x − 1)dx = 2F(x) − + C R R C f (2x − 1)dx = 2F(2x − 1) + C D f (2x − 1)dx = F(2x − 1) + C Câu 15 Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V B C D A √ sin 2x Câu 16 Giá trị lớn hàm số y = ( π) R bằng? √ A B π C D π p Câu 17 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếu < x < π y > − 4π2 C Nếux = y = −3 D Nếu < x < y < −3 Câu 18 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (−1; 2) B −1 < m < C m ∈ (0; 2) D m ≥ Câu 19 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π A 3π B 3π C √ D 3 Câu 20 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 2; 0) B (0; 6; 0) C (0; −2; 0) D (−2; 0; 0) R1 √3 Câu 21 Tính I = 7x + 1dx 20 A I = B I = 60 28 C I = 45 28 D I = 21 Câu 22 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = −15 C m = 13 D m = −2 + 2x Câu 23 Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A ∀m ∈ R B < m , C m < D −4 < m < Câu 24 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: Trang 2/5 Mã đề 001 q √ a b2 − 3a2 √ 3a2 b B VS ABC = √ 12 √12 3ab a2 3b2 − a2 C VS ABC = D VS ABC = 12 12 Câu 25 Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 30a3 B 60a3 C 20a3 D 100a3 A VS ABC = Câu 26 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R (mặt nước thấp nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số √ √ √ h √ 2π − 3 π− 2π − 3 B C D A 12 12 Câu 27 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung √ quanh diện tích mặt đáy 2là nhỏ nhất, S C 125dm D 75dm2 A 106, 25dm2 B 50 5dm2 3x − Câu 28 Tập nghiệm bất phương trình log4 (3 x − 1).log ≤ là: 16 4 A S = [1; 2] B S = (−∞; 1] ∪ [2; +∞) C S = (0; 1] ∪ [2; +∞) D S = (1; 2) Câu 29 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) B C D A 4 4 x2 + 2x Câu 30 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A B 15 C −2 D Câu 31 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi √ là: A 3π B 8π C 2π D 4π √ Câu 32 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích khối chóp S ABC √ √ √ √ a3 2a3 a3 3 A a B C D 3 Câu 33 Cho hình chóp S.ABC có đáy ABC tam giác vuông cân với BA = BC = a, S A = a vng góc với mặt phẳng đáy Tính cơsin √ (SAC) (SBC) bằng? √ √ góc hai mặt phẳng 2 A B C D 2 Câu 34 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−3; 0) B (1; 5) C (3; 5) D (−1; 1) π R2 Câu 35 Biết sin 2xdx = ea Khi giá trị a là: A B C − ln D ln Trang 3/5 Mã đề 001 Câu 36 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m < −2 B m > C m > m < −1 D m > m < − R ax + b 2x Câu 37 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D Câu 38 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 15 πa2 17 πa 17 B C D A 4 Câu 39 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ B 4a3 C 9a3 D 6a3 A 3a3 Câu 40 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 3a3 B 6a3 C 12a3 D 4a3 x2 Câu 41 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 32 128 64 Câu 42 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = − (x2 − 2x)dx + (x2 − 2x)dx B C D R3 R2 R3 1 R3 R2 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx − |x2 − 2x|dx R3 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx (x2 − 2x)dx Câu 43 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 3mn + n + 2mn + 2n + B log2 2250 = A log2 2250 = m n 2mn + n + 2mn + n + C log2 2250 = D log2 2250 = n n Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 21 10 31 11 17 10 16 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 45 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng B 36080254 đồng C 36080251 đồng D 36080255 đồng Câu 46 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 A sin xdx = cos x + C B (2x + 1)2 dx = + C R R e2x C x dx =5 x + C D e2x dx = +C Trang 4/5 Mã đề 001 Câu 47 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D d Câu 48 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm √ cách từ S đến mặt phẳng (ABC) √ cạnh BC, S A = S C = S M = a Tính khoảng A a B a C a D 2a R ax + b 2x )e + C Khi giá trị a + b là: Câu 49 Biết a, b ∈ Z cho (x + 1)e2x dx = ( A B C D Câu 50 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + 2πR2 B S = 2πRl + 2πR2 C S = πRl + πR2 D S = πRh + πR2 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001