1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn khảo sát chất lượng thptqg môn toán (681)

5 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 123,74 KB

Nội dung

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Hình nón có bán kính đáy R, đường sinh l thì[.]

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Hình nón có bán kính đáy √ R, đường sinh l diện√tích xung quanh A πRl B π l2 − R2 C 2π l2 − R2 D 2πRl Câu R2 Công thức sai? A R cos x = sin x + C C e x = e x + C R B R a x = a x ln a + C D sin x = − cos x + C Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≤ B m > C m ≥ D m < Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 B C D −6 A Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = −x4 + 3x2 − C y = x D y = x2 − 2x + Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = − 4t B x = + 2ty = + tz = C x = + ty = + 2tz = D x = + 2ty = + tz = Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) B Hàm số nghịch biến R C Hàm số đồng biến R D Hàm số nghịch biến (0; +∞) Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B 4πR3 C πR3 D πR3 R Câu R9 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = 2F(2x − 1) + C B f (2x − 1)dx = 2F(x) − + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = F(2x − 1) + C x−1 y+2 z Câu 10 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − y − 2z = B (P) : x − 2y − = C (P) : x − y + 2z = D (P) : x + y + 2z = Câu 11 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D √ x x Câu 12 Tìm nghiệm phương trình = ( 3) A x = −1 B x = C x = D x = Câu 13 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , B m = C m , D m , −1 Trang 1/5 Mã đề 001 Câu 14 Gọi S (t) diện tích hình phẳng giới hạn đường y = t(t > 0) Tìm lim S (t) t→+∞ 1 A − ln − B ln − C ln + 2 √ sin 2x R bằng? Câu 15 √ Giá trị lớn hàm số y = ( π) A π B C ; y = 0; x = 0; x = (x + 1)(x + 2)2 D − ln 2 D π Câu 16 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số đồng biến khoảng (−3; 1) B Hàm số nghịch biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (−∞; −3) D Hàm số nghịch biến khoảng (1; +∞) Câu 17 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: q √ √ 2 a b2 − 3a2 3a b B VS ABC = A VS ABC = 12 √ 12 √ a2 3b2 − a2 3ab2 C VS ABC = D VS ABC = 12 12 Câu 18 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = B y = x3 − 2x2 + 3x + x−1 C y = sin x D y = tan x Câu 19 Hàm số sau khơng có cực trị? A y = x2 C y = x3 − 6x2 + 12x − B y = cos x D y = x4 + 3x2 + Câu R20 Công thức sai? A R sin x = − cos x + C C a x = a x ln a + C R B R cos x = sin x + C D e x = e x + C p Câu 21 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếu < x < y < −3 C Nếu < x < π y > − 4π D Nếux = y = −3 Rm dx theo m? Câu 22 Cho số thực dươngm Tính I = x + 3x + m+1 m+2 m+2 2m + ) B I = ln( ) C I = ln( ) D I = ln( ) A I = ln( m+2 m+1 2m + m+2 x Câu 23 Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = −1 B y = C y = − D y = R R R R 2 Câu 24 Hàm số sau đồng biến R? A y = x4 + 3x2 + B y = tan √ x √ C y = x D y = x2 + x + − x2 − x + Câu 25 Kết đúng? R sin3 x A sin2 x cos x = + C R C sin2 x cos x = −cos2 x sin x + C B R sin2 x cos x = cos2 x sin x + C sin3 x + C Câu 26 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) B C D A 4 4 D R sin2 x cos x = − Trang 2/5 Mã đề 001 Câu 27 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 2a2 b 4a2 b 2a2 b 4a2 b C √ B √ D √ A √ 3π 3π 2π 2π Câu 28 Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước Người ta thả vào khối cầu có đường kính chiều cao bình nước đo thể tích nước tràn 18π (dm3) Biết khối cầu tiếp xúc với tất đường sinh hình nón nửa khối cầu chìm nước Tính thể tích nước cịn lại bình A 6π(dm3 ) B 54π(dm3 ) C 24π(dm3 ) D 12π(dm3 ) Câu 29 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc √ sin góc MN và√mặt phẳng (S BD) √ MN mặt phẳng (ABCD) 60 Tính 10 B C D A 5 Câu 30 Cho hình chóp S.ABC có đáy ABC tam giác vng cân với BA = BC = a, S A = a vng góc với √ góc hai mặt phẳng (SAC) (SBC) bằng? √ mặt phẳng đáy Tính cơsin √ 2 B C D A 2 Câu 31 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = (−1; +∞) B S = (−4; −1) C S = (−∞; −4) ∪ (−1; +∞) D S = [−1; +∞) √ x− x+2 có tất tiệm cận? Câu 32 Đồ thị hàm số y = x2 − A B C D Câu 33 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung diện tích mặt đáy nhỏ nhất, S √ quanh 2 A 125dm B 50 5dm C 106, 25dm2 D 75dm2 R ax + b 2x Câu 34 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D Câu 35 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 36 Trong không gian với hệ trục tọa độ Oxyz cho → → − → − tơ u + v −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (3; 14; 16) A 2→ B 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (1; 13; 16) C 2→ D 2→ Câu 37 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = B P = 2loga e C P = ln a D P = + 2(ln a)2 Câu 38 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo √ góc đường thẳng S√B mp(S AC) Tính giá√trị sin α 15 15 A B C D 10 Trang 3/5 Mã đề 001 Câu 39 Cho tứ diện DABC, tam giác ABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a B C D A 3 Câu 40 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = m = −10 C m = D m = m = −16 Câu 41 Chọn mệnh đề mệnh đề sau: A Nếu a > a x = ay ⇔ x = y B Nếu a < a x > ay ⇔ x < y C Nếu a > a x > ay ⇔ x < y D Nếu a > a x > ay ⇔ x > y Câu 42 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+2b+3c B P = 2a+b+c C P = 26abc D P = 2abc Câu 43 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+b+c B P = 26abc C P = 2a+2b+3c D P = 2abc Câu 44 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln C y′ = x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 + sin 3x)5 x+cos3x ln Câu 45 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 23 29 27 A B C D 4 4 Câu 46 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 A B C D r 3x + Câu 47 Tìm tập xác định D hàm số y = log2 x−1 A D = (1; +∞) B D = (−∞; −1] ∪ (1; +∞) C D = (−1; 4) D D = (−∞; 0) Câu 48 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 4a3 B 3a3 C 12a3 D 6a3 Câu 49 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + 2πR2 B S = πRh + πR2 C S = 2πRl + 2πR2 D S = πRl + πR2 Câu 50 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 3mn + n + 2mn + 2n + A log2 2250 = B log2 2250 = n m 2mn + n + 2mn + n + C log2 2250 = D log2 2250 = n n Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 07/04/2023, 09:28