TOÁN PDF LATEX (Đề thi có 11 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là A 3 B[.]
TỐN PDF LATEX TRẮC NGHIỆM ƠN THI MƠN TỐN THPT (Đề thi có 11 trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu [2] Tổng nghiệm phương trình x −4x+5 = A B C D Câu [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a 5a 8a a B C D A 9 9 Câu [4-1214h] Cho khối lăng trụ ABC.A0 B0C , khoảng cách từ√C đến đường thẳng BB0 2, khoảng cách từ A đến đường thẳng BB0 CC √ 3, hình chiếu vng góc A lên mặt phẳng (A0 B0C ) trung điểm M B0C A0 M = Thể tích khối lăng trụ cho √ √ A B C D 3 Câu Khối đa diện thuộc loại {3; 3} có đỉnh, cạnh, mặt? A đỉnh, cạnh, mặt B đỉnh, cạnh, mặt C đỉnh, cạnh, mặt D đỉnh, cạnh, mặt Câu Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Cả hai câu sai C Chỉ có (II) D Chỉ có (I) 1−n Câu [1] Tính lim bằng? 2n + 1 1 B C D A − 2 Câu [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% năm Ơng muốn hồn nợ ngân hàng theo cách: Sau tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách tháng, số tiền hoàn nợ lần trả hết tiền nợ sau tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng lần hoàn nợ bao nhiêu? Biết lãi suất ngân hàng không đổi thời gian ông A hoàn nợ 100.(1, 01)3 100.1, 03 A m = triệu B m = triệu 3 120.(1, 12)3 (1, 01)3 C m = triệu D m = triệu (1, 12)3 − (1, 01)3 − Câu [2-c] Giá trị lớn hàm số y = xe−2x đoạn [1; 2] 1 A B C √ 2e e e D e3 Câu Cho hàm số y = x3 − 2x2 + x + Mệnh ! đề đúng? A Hàm số nghịch biến khoảng −∞; B Hàm số nghịch biến khoảng (1; +∞) ! ! 1 C Hàm số đồng biến khoảng ; D Hàm số nghịch biến khoảng ; 3 Trang 1/11 Mã đề Câu 10 Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 B Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục điểm Câu 11 [1] Phương trình log2 4x − log 2x = có nghiệm? A nghiệm B Vô nghiệm C nghiệm D nghiệm Câu 12 [2] Cho hàm số f (x) = x x Giá trị f (0) A f (0) = ln 10 B f (0) = 10 C f (0) = D f (0) = ln 10 x+2 đồng biến khoảng Câu 13 Có giá trị nguyên tham số m để hàm số y = x + 5m (−∞; −10)? A Vô số B C D Câu 14 Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a A lim = B lim [ f (x)g(x)] = ab x→+∞ g(x) x→+∞ b C lim [ f (x) + g(x)] = a + b D lim [ f (x) − g(x)] = a − b x→+∞ x→+∞ Câu 15 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B a C a D Câu 16 Hình chóp tứ giác có mặt phẳng đối xứng? A Ba mặt B Một mặt C Hai mặt Câu 17 ! định sau sai? Z Các khẳng f (x)dx = f (x) A Z C B f (x)dx = F(x) + C ⇒ Câu 18 Cho I = Z Z x √ Z f (t)dt = F(t) + C D dx = 4+2 x+1 trị P = a + b + c + d bằng? A P = B P = −2 2n + Câu 19 Tìm giới hạn lim n+1 A B Z k f (x)dx = k D Bốn mặt Z f (x)dx, k số Z f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C a a + b ln + c ln d, biết a, b, c, d ∈ Z phân số tối giản Giá d d C P = 28 D P = 16 C D Câu 20 Hình lập phương có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt √ Câu 21 [2] Thiết diện qua trục hình nón trịn xoay tam giác có diện tích a2 Thể tích khối nón √ √ cho √ √ πa πa3 πa3 πa3 A V = B V = C V = D V = 6 log7 16 Câu 22 [1-c] Giá trị biểu thức log7 15 − log7 15 30 A B −4 C D −2 Trang 2/11 Mã đề 4x + Câu 23 [1] Tính lim bằng? x→−∞ x + A −1 B −4 C D Câu 24 Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận tháng người phải trả cho ngân hàng triệu đồng trả tháng hết nợ (tháng cuối trả triệu) Hỏi sau tháng người trả hết nợ ngân hàng A 24 B 23 C 21 D 22 Trong khẳng định sau đây, khẳng định đúng? Câu 25 [3-12217d] Cho hàm số y = ln x+1 y y A xy = −e + B xy = e + C xy0 = −ey − D xy0 = ey − Câu 26 [3-1211h] Cho khối chóp S ABC có cạnh bên a mặt bên hợp với đáy góc 45◦ Tính thể√tích khối chóp S ABC√ theo a √ a3 a3 15 a3 15 a3 A B C D 25 25 Câu 27 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 28 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C dx = ln |x| + C, C số x B Z D dx = x + C, C số xα dx = xα+1 + C, C số α+1 Câu 29 Trong khẳng định sau, khẳng định sai? A F(x) = − cos x nguyên hàm hàm số f (x) = sin x B Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) dx = log |u(x)| + C C u(x) D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 30 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vô nghiệm Câu 31 [2] Biết M(0; 2), N(2; −2) điểm cực trị đồ thị hàm số y = ax3 + bx2 + cx + d Tính giá trị hàm số x = −2 A y(−2) = B y(−2) = C y(−2) = −18 D y(−2) = 22 Câu 32 [1] Tập ! xác định hàm số y! = log3 (2x + 1) ! 1 A − ; +∞ B ; +∞ C −∞; − 2 ! D −∞; Câu 33 Cho z nghiệm phương trình√ x2 + x + = Tính P =√z4 + 2z3 − z −1 + i −1 − i A P = 2i B P = C P = D P = 2 √ √ 4n2 + − n + Câu 34 Tính lim 2n − 3 A B C +∞ D 2 π Câu 35 Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại điểm x = , x = π Tính giá √ trị biểu thức T = a + b Trang 3/11 Mã đề √ A T = 3 + B T = √ C T = D T = log 2x Câu 36 [1229d] Đạo hàm hàm số y = x2 − ln 2x − ln 2x − log 2x A y0 = B y0 = C y0 = D y0 = 3 2x ln 10 x ln 10 x 2x ln 10 Câu 37 [4-1244d] Trong tất số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − + 5i| = |z − i| Biết rằng, |z + − i| nhỏ Tính P = ab 13 23 A B C − D − 100 25 100 16 Câu 38 Cho hàm số y = −x + 3x − Mệnh đề đúng? A Hàm số đồng biến khoảng (0; +∞) B Hàm số nghịch biến khoảng (−∞; 2) C Hàm số đồng biến khoảng (0; 2) D Hàm số nghịch biến khoảng (0; 2) Câu 39 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ (a; b), ta có f (x) = F(x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ [a; b], ta có F (x) = f (x) Câu 40 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D x−1 y z+1 = = −1 mặt phẳng (P) : 2x − y + 2z − = Viết phương trình mặt phẳng (Q) chứa ∆ tạo với (P) góc nhỏ A 2x − y + 2z − = B 2x + y − z = C −x + 6y + 4z + = D 10x − 7y + 13z + = Câu 41 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình Câu 42 Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C D0 , biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4) Tìm tọa độ đỉnh A0 A A0 (−3; 3; 1) B A0 (−3; −3; −3) C A0 (−3; −3; 3) D A0 (−3; 3; 3) Câu 43 Cho hình chóp S ABCD có cạnh đáy 2a Mặt bên hình chóp tạo với đáy góc 60◦ Mặt phẳng (P) chứa cạnh AB qua trọng tâm G tam giác S AC cắt S C, S D M, n Thể tích khối √ chóp S ABMN √ √ √ 2a3 a3 5a3 4a B C D A 3 Câu 44 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Cả hai C Cả hai sai D Chỉ có (I) Trang 4/11 Mã đề 0 0 Câu 45.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 46 Cho hàm số y = x3 − 3x2 − Mệnh đề sau đúng? A Hàm số nghịch biến khoảng (1; +∞) B Hàm số đồng biến khoảng (1; 2) C Hàm số nghịch biến khoảng (−∞; 0) D Hàm số nghịch biến khoảng (0; 1) Câu 47 [2] Cho hàm số y = ln(2x + 1) Tìm m để y0 (e) = 2m + 1 − 2e − 2e + 2e + 2e A m = B m = C m = D m = 4e + − 2e 4e + − 2e Câu 48 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề sai? ( f (x) + g(x))dx = A Z C ( f (x) − g(x))dx = f (x)dx + Z g(x)dx f (x)dx − k f (x)dx = f B Z Z g(x)dx D f (x)g(x)dx = Z f (x)dx, k ∈ R, k , Z f (x)dx g(x)dx !2x−1 !2−x 3 Câu 49 Tập số x thỏa mãn ≤ 5 A [3; +∞) B [1; +∞) C (+∞; −∞) D (−∞; 1] Câu 50 Giá trị lim (3x2 − 2x + 1) x→1 A +∞ B D C Câu 51 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Câu 52 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B 2020 C log2 2020 D log2 13 Câu 53 [2] Tích tất nghiệm phương trình (1 + log2 x) log4 (2x) = 1 C D A B Câu 54 Giá trị giới hạn lim (x − x + 7) bằng? x→−1 A B C D Câu 55 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ a a A B C a D 2a 2 Câu 56 [2D1-3] Tìm giá trị tham số m để hàm số y = x3 − mx2 + 3x + đồng biến R A m ≥ B −3 ≤ m ≤ C m ≤ D −2 ≤ m ≤ ! ! ! x 2016 Câu 57 [3] Cho hàm số f (x) = x Tính tổng T = f +f + ··· + f +2 2017 2017 2017 2016 A T = 2017 B T = C T = 2016 D T = 1008 2017 Câu 58 [2] Tổng nghiệm phương trình x−1 x = 8.4 x−2 A − log2 B − log2 C − log3 D − log2 Trang 5/11 Mã đề Câu 59 [3-1213h] Hình hộp chữ nhật khơng có nắp tích 3200 cm3 , tỷ số chiều cao chiều rộng Khi tổng mặt hình nhỏ nhất, tính diện tích mặt đáy hình hộp A 160 cm2 B 120 cm2 C 1200 cm2 D 160 cm2 Câu 60 [3-12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C < m ≤ D ≤ m ≤ Câu 61 Khối đa diện loại {3; 4} có số mặt A 10 B 12 C D Câu 62 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b D A B C 2 − xy Câu 63 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 19 11 + 19 11 − 18 11 − 29 A Pmin = B Pmin = C Pmin = D Pmin = 9 21 Câu 64 [1] Phương trình log3 (1 − x) = có nghiệm A x = −8 B x = −5 C x = D x = −2 Câu 65 Hàm số sau khơng có cực trị x−2 A y = x3 − 3x B y = 2x + C y = x4 − 2x + Câu 66 [2] Tổng nghiệm phương trình x +2x = 82−x A −5 B C −6 D y = x + x D √ Câu 67 Cho chóp S ABCD có đáy ABCD hình vuông cạnh a Biết S A ⊥ (ABCD) S A = a Thể tích khối chóp S ABCD √ √ √ a3 a3 a3 C D A a B 12 Câu 68 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 d = 60◦ Đường chéo Câu 69 Cho lăng trụ đứng ABC.A0 B0C có đáy tam giác vuông A, AC = a, ACB BC mặt bên (BCC B0 ) tạo với mặt phẳng (AA0C 0C) góc 30◦ Thể tích khối lăng trụ ABC.A0 B0C √ √ √ √ 2a3 4a3 a3 A a B C D 3 Câu 70 Gọi M, m giá trị lớn nhất, giá trị nhỏ hàm số y = (x2 − 3)e x đoạn [0; 2] Giá trị biểu thức P = (m2 − 4M)2019 A B e2016 C 22016 D t Câu 71 [4] Xét hàm số f (t) = t , với m tham số thực Gọi S tập tất giá trị m cho + m2 f (x) + f (y) = 1, với số thực x, y thỏa mãn e x+y ≤ e(x + y) Tìm số phần tử S A Vô số B C D Câu 72 Cho hình chóp S ABC Gọi M trung điểm S A Mặt phẳng BMC chia hình chóp S ABC thành A Hai hình chóp tứ giác Trang 6/11 Mã đề B Một hình chóp tam giác hình chóp tứ giác C Hai hình chóp tam giác D Một hình chóp tứ giác hình chóp ngũ giác Câu 73 [4-1243d] Trong tất số phức z thỏa mãn hệ thức |z − + 3i| = |z − − 5i| Tìm giá trị nhỏ |z + + i| √ √ √ √ 12 17 B 68 C D A 34 17 Câu 74 Cho hai đường thẳng phân biệt d d0 đồng phẳng Có phép đối xứng qua mặt phẳng biến d thành d0 ? A Có hai B Có C Có hai D Khơng có Câu 75 [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% tháng Biết khơng rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền khơng 110 triệu đồng (cả vốn lẫn lãi), biết thời gian gửi tiền người khơng rút tiền lãi suất khơng thay đổi? A 18 tháng B 15 tháng C 17 tháng D 16 tháng Câu 76 Trong mệnh đề đây, mệnh đề nào!sai? un = A Nếu lim un = a , lim = ±∞ lim B Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un C Nếu lim un = a > lim = lim = +∞ ! un D Nếu lim un = a < lim = > với n lim = −∞ Câu 77 Cho số phức z thỏa mãn |z + √ 3| = |z − 2i| = |z − − 2i| Tính |z| √ A |z| = 17 B |z| = 17 C |z| = 10 D |z| = 10 Câu 78 Cho hai đường thẳng d d0 cắt Có phép đối xứng qua mặt phẳng biến d thành d0 ? A Có hai B Có C Khơng có D Có vơ số x−2 Câu 79 Tính lim x→+∞ x + A B C − D −3 Câu 80 Tứ diện có mặt phẳng đối xứng? A 10 mặt B mặt C mặt D mặt cos n + sin n Câu 81 Tính lim n2 + A −∞ B +∞ C D 1 + + ··· + n Câu 82 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + 1 A lim un = B lim un = C Dãy số un khơng có giới hạn n → +∞ D lim un = Câu 83 có nghĩa √ Biểu thức sau không −3 −1 A −1 B 2n − Câu 84 Tính lim 2n + 3n + A B −∞ C (−1)−1 √ D (− 2)0 C +∞ D Trang 7/11 Mã đề Câu 85 Khối đa diện loại {4; 3} có số mặt A B 12 C 10 D Câu 86 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 1% năm Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau năm người thu (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định thời gian lãi suất khơng đổi người không rút tiền ra? A 12 năm B 10 năm C 13 năm D 11 năm Câu 87 [2] Tổng nghiệm phương trình x − 12.3 x + 27 = A 12 B 27 C 10 D Câu 88 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a A B C D a x−3 Câu 89 [1] Tính lim bằng? x→3 x + A −∞ B +∞ C D 1 Câu 90 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = e + B xy = e − C xy0 = −ey − D xy0 = −ey + Câu 91 Khối đa diện loại {3; 5} có số cạnh A 30 B 20 C D 12 Câu 92 [2] Cho hàm số f (x) = x ln2 x Giá trị f (e) C D 2e + A 2e B e Câu 93 [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép ổn định tháng lĩnh 61.758.000 Hỏi lãi suất ngân hàng tháng bao nhiêu? Biết lãi suất không thay đổi thời gian gửi A 0, 8% B 0, 7% C 0, 6% D 0, 5% x x−3 x−2 x−1 + + + y = |x + 2| − x − m (m tham Câu 94 [4-1213d] Cho hai hàm số y = x−2 x−1 x x+1 số thực) có đồ thị (C1 ) (C2 ) Tập hợp tất giá trị m để (C1 ) cắt (C2 ) điểm phân biệt A (2; +∞) B (−∞; 2] C (−∞; 2) D [2; +∞) √ Câu 95 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị ngun dương m để phương trình cho có nghiệm phân biệt? A 63 B Vô số C 62 D 64 √ Câu 96 [1] Biết log6 a = log6 a A B 36 C 108 D x = + 3t Câu 97 [1232h] Trong không gian Oxyz, cho đường thẳng d : y = + 4t Gọi ∆ đường thẳng qua z = điểm A(1; 1; 1) có véctơ phương ~u = (1; −2; 2) Đường phân giác góc nhọn tạo d ∆ có phương trình x = + 3t x = −1 + 2t x = −1 + 2t x = + 7t D A y = −10 + 11t C y=1+t y = + 4t y = −10 + 11t B z = + 5t z = − 5t z = − 5t z = −6 − 5t Trang 8/11 Mã đề Câu 98 Tìm m để hàm số y = x4 − 2(m + 1)x2 − có cực trị A m > −1 B m ≥ C m > D m > Câu 99 Một khối lăng trụ tam giác chia thành khối tứ diện tích nhau? A B C D Câu 100 Khối đa diện loại {3; 3} có số đỉnh A B C D Câu 101 Tìm giá trị tham số m để hàm số y = −x + 3mx + 3(2m − 3)x + nghịch biến khoảng (−∞; +∞) A (−∞; −3] B [−3; 1] C [1; +∞) D [−1; 3] Câu 102 [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = z1 thỏa mãn |z1 − − i| = Diện tích hình phẳng giới hạn hai quỹ tích biểu diễn hai số phức z z1 gần giá trị nhất? A 0, B 0, C 0, D 0, Câu 103 Điểm cực đại đồ thị hàm số y = 2x3 − 3x2 − A (0; −2) B (1; −3) C (−1; −7) D (2; 2) Câu 104 [1] Cho a > 0, a , Giá trị biểu thức log a1 a2 1 A − B C D −2 2 Câu 105 [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + Tìm giá trị tham số m để hàm số nghịch biến R A −2 < m < −1 B (−∞; −2) ∪ (−1; +∞) C (−∞; −2] ∪ [−1; +∞) D −2 ≤ m ≤ −1 Câu 106 [2] Cho hàm số f (x) = ln(x4 + 1) Giá trị f (1) ln A B C D 2 Câu 107 [2-c] Giá trị nhỏ hàm số y = (x2 − 2)e2x đoạn [−1; 2] A 2e4 B 2e2 C −2e2 D −e2 Câu 108 Hình lăng trụ tam giác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt Câu 109 Khối đa diện loại {3; 5} có số mặt A 30 B 20 D Câu 110 Dãy số sau có giới hạn 0? n2 − 3n − 2n A un = B un = n 5n + n2 C 12 C un = n2 − 5n − 3n2 D un = n2 + n + (n + 1)2 Câu 111 Tổng diện tích mặt khối lập phương 96cm2 Thể tích khối lập phương là: A 84cm3 B 48cm3 C 64cm3 D 91cm3 Câu 112 [1] Cho a số thực dương tùy ý khác Mệnh đề đúng? 1 A log2 a = − loga B log2 a = loga C log2 a = D log2 a = log2 a loga x−2 x−1 x x+1 + + + y = |x + 1| − x − m (m tham x−1 x x+1 x+2 số thực) có đồ thị (C1 ) (C2 ) Tập hợp tất giá trị m để (C1 ) cắt (C2 ) điểm phân biệt A (−∞; −3) B (−∞; −3] C (−3; +∞) D [−3; +∞) Câu 113 [4-1212d] Cho hai hàm số y = Trang 9/11 Mã đề √ x2 + 3x + Câu 114 Tính giới hạn lim x→−∞ 4x − 1 A − B C 4 Câu 115 Nhị thập diện (20 mặt đều) thuộc loại A {5; 3} B {3; 5} C {3; 4} D D {4; 3} un Câu 116 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B +∞ C D Câu 117 Cho khối chóp S ABC √ có đáy ABC tam giác cạnh a Hai mặt bên (S AB) (S AC) vng góc Thể tích khối chóp S ABC√là √ với đáy S C = a 3.3 √ √ a a a3 2a3 A B C D 12 Câu 118 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab B √ A C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 119 [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn tháng, lãi suất 2% quý Sau tháng, người gửi thêm 100 triệu đồng với kỳ hạn lãi suất trước Tổng số tiền người nhận sau năm gửi tiền vào ngân hàng gần kết sau đây? Biết suốt thời gian gửi tiền lãi suất ngân hàng khơng thay đổi người khơng rút tiền A 216 triệu B 210 triệu C 220 triệu D 212 triệu Câu 120 [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung hai x+1 y−4 z−4 x−2 y−3 z+4 = = d0 : = = đường thẳng d : −5 −2 −1 x−2 y+2 z−3 x y−2 z−3 A = = B = = 2 2 −1 x y z−1 x−2 y−2 z−3 C = = D = = 1 Câu 121 [3-1212h] Cho hình lập phương ABCD.A0 B0C D0 , gọi E điểm đối xứng với A0 qua A, gọi G la trọng tâm tam giác EA0C Tính tỉ số thể tích k khối tứ diện GA0 B0C với khối lập phương ABCD.A0 B0C D0 1 1 B k = C k = D k = A k = 15 18 Câu 122 [2D1-3] Tìm giá trị tham số m để hàm số y = − x3 − mx2 − (m + 6)x + đồng biến √ đoạn có độ dài 24 A m = −3 B −3 ≤ m ≤ C m = D m = −3, m = Câu 123 Trong khẳng định sau, khẳng định sai? A F(x) = x2 nguyên hàm hàm số f (x) = 2x √ B F(x) = x nguyên hàm hàm số f (x) = x C Cả ba đáp án D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 124 Giá √ trị cực đại hàm số y√= x − 3x − 3x + √ A −3 + B −3 − C + √ D − Câu 125 [1] Tập xác định hàm số y = x−1 A D = (0; +∞) B D = R D D = R \ {1} C D = R \ {0} Trang 10/11 Mã đề Câu 126 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m < B m ≥ C m > D m ≤ 4 4 Câu 127 Tìm m để hàm số y = mx + 3x + 12x + đạt cực đại x = A m = B m = −3 C m = −2 D m = −1 Câu 128 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% năm Biết khơng rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào só tiền vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất không thay đổi người khơng rút tiền ra? A 12 năm B 11 năm C 10 năm D 14 năm Câu 129 Hàm số y = −x3 + 3x2 − đồng biến khoảng đây? A (2; +∞) B (0; 2) C R D (−∞; 1) Câu 130 Khối đa diện loại {5; 3} có số mặt A 12 B 30 D C 20 - - - - - - - - - - HẾT- - - - - - - - - - Trang 11/11 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A A A A D D 10 11 A D 14 A 15 D 16 17 D 18 A 19 A 20 21 A 22 23 D 26 C 30 A 31 C 32 A D 33 36 C 40 41 B D B C B D 44 A C D 47 A B 46 D 48 D 50 B 52 51 A 53 D 55 A 57 D 61 D 63 D 54 B 56 B 58 59 A 67 D 42 D 45 65 B 38 39 A 43 C 34 A B 37 D 28 B 29 49 D 24 C 25 35 B 12 A 13 27 D B D 60 C 62 C 64 A C 66 A B 68 C B 70 69 A D 71 C 72 C 73 C 74 C C 75 D 76 77 D 78 A C 81 83 82 D 89 D 88 90 C 91 A B 92 C D 94 B C 95 96 A 97 A 98 A 99 A C 100 B 103 A 102 D 104 D 105 D 106 107 D 108 109 D 86 A 87 101 B 84 B 85 A 93 D 80 79 A B 111 110 B D B D 112 C 113 B 114 A 115 B 116 D 118 D 117 A 119 D 120 122 D 123 B 125 B 124 A 126 128 D C 127 B 129 130 A C B