Trang 1/3 Mã đề thi 132 SỞ GIÁO DỤC & ĐÀO TẠO HP TRƯỜNG THPT NHỮ VĂN LAN ĐỀ THI KHẢO SÁT CHẤT LƯỢNG Môn Toán 12 Thời gian làm bài 90 phút; Mã đề thi 132 Họ, tên thí sinh Lớp I Phần trắc nghiệm (7 điểm[.]
SỞ GIÁO DỤC & ĐÀO TẠO HP TRƯỜNG THPT NHỮ VĂN LAN ĐỀ THI KHẢO SÁT CHẤT LƯỢNG Môn : Toán 12 Thời gian làm bài: 90 phút; Họ, tên thí sinh: Lớp: I Phần trắc nghiệm: (7 điểm) Chọn câu trả lời câu sau: Mã đề thi 132 x x 3x B Có hệ số góc dương D Có hệ số góc – Câu 1: Tiếp tuyến điểm cực tiểu đồ thị hàm số y A Song song với đường thẳng x = C Song song với trục hoành Câu 2: Đạo hàm cấp hai hàm số A B Câu 3: Đạo hàm hàm số y = cotx là: B A là: x 12 x 35 x 5 x 5 B C D C D C -2 D Câu 4: Giới hạn lim A + Câu 5: Giá trị nhỏ hàm số y A B – 2x đoạn [ ; ] Chọn câu 1 x C D – Câu 6: Hàm số y x 2x đạt cực trị điểm có hồnh độ A -1 B C D Câu 7: Nếu không sử dụng thêm điểm khác đỉnh hình lập phương chia hình lập phương thành A Bốn tứ diện hình chóp tam giác B Năm tứ diện C Một tứ diện bốn hình chóp tam giác giác D Năm hình chóp tam giác giác đều, khơng có tứ diện Câu 8: Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a, SA (ABCD), SA a Gọi α góc SC mp(ABCD) Chọn khẳng định khẳng định sau? A α = 450 B α = 600 C cos D α = 300 Câu 9: Trong mệnh đề sau đây, mệnh đề đúng? A Nếu đường thẳng a vng góc với đường thẳng b đường thẳng b vng góc với đường thẳng c đường thẳng a vng góc với đường thẳng c B Nếu đường thẳng a vuông góc với đường thẳng b đường thẳng b song song với đường thẳng c đường thẳng a vng góc với đường thẳng c C Cho ba đường thẳng a, b, c vng góc với đơi Nếu có đường thẳng d vng góc với a d song song với b c D Cho hai đường thẳng a, b song song với Một đường thẳng c vng góc với a c vng góc với đường thẳng nằm mặt phẳng (a,b) Câu 10: Cho hàm số y = sin 2x chọn đẳng thức đẳng thức sau: A y = y’’.tan2x B 4y +y’’= C y2 + (y’)2 = D 4y - y’’=0 Câu 11: Giới hạn lim x1 x2 x 1 Trang 1/3 - Mã đề thi 132 A B C D Câu 12: Trong mệnh đề sau, mệnh đề đúng? A Có mặt phẳng qua điểm cho trước vng góc với mặt phẳng cho trước B Có mặt phẳng qua điểm cho trước vng góc với đường thẳng cho trước C Có mặt phẳng qua đường thẳng cho trước vng góc với mặt phẳngcho trước D Có đường thẳng qua điểm cho trước vng góc với đường thẳng cho trước Câu 13: Khoảng đồng biến y x 2x là: A (0;1) B (-∞; -1) (0; 1) C (-∞; -1) D (3;4) là: Câu 14: Đạo hàm hàm số B A C D Câu 15: Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a Cạnh bên SA vng góc với đáy SA a Góc hai mặt phẳng (SBC) (SCD) bao nhiêu? A 600 B 300 C 450 D 900 là: Câu 16: Đạo hàm hàm số B A C D x2 3x x 2 2x B Câu 17: Giới hạn lim A + C - D 2x qua điểm M(2 ; 3) xm C -2 D Câu 18: Giá trị m để tiệm cận đứng đồ thị hsố y A Câu 19: Cho hàm số B y 3x x Khẳng định sau đúng? 3 C Đồ thị hàm số có tiệm cận đứng x= D Đồ thị hàm số có tiệm cận ngang y Câu 20: Trong mệnh đề sau đây, mệnh đề đúng? A Hai đường thẳng vng góc với đường thẳng song song với B Hai đường thẳng vng góc với đường thẳng vng góc với C Một đường thẳng vng góc với hai đường thẳng vng góc với song song với đường thẳng cịn lại D Một đường thẳng vng góc với hai đường thẳng song song vng góc với đường thẳng A Đồ thị hàm số khơng có tiệm cận B Đồ thị hàm số có tiệm cận đứng y Câu 21: Kết luận giá trị lớn giá trị nhỏ hàm số y x A Có giá trị lớn có giá trị nhỏ nhất; B Có giá trị nhỏ khơng có giá trị lớn nhất; C Có giá trị lớn khơng có giá trị nhỏ nhất; D Khơng có giá trị lớn giá trị nhỏ Câu 22: Đạo hàm hàm số là: A B Trang 2/3 - Mã đề thi 132 C Câu 23: Đạo hàm hàm số A B Câu 24: Giới hạn lim x x D là: C D x B C A Câu 25: Khối lập phương khối đa diện loại A {5;3} B {3;4} C {4;3} Câu 26: Khối đa diện sau có mặt khơng phải tam giác đều? A mười hai mặt B Hai mươi mặt C Bát diện D -1 D {3;5} D Tứ diện Câu 27: Hàm số y x 3x mx đạt cực tiểu x = B m C m D m A m Câu 28: Trong hàm số sau, hàm số nghịch biến (1, 3) ? A y x 2x B y x 4x 6x x2 x 1 2x D y C y x 1 x 1 I Phần tự luận : (3 điểm) Câu 1: (1 điểm) Cho hàm số : y = −2x3 + x2 + (C) a) Viết phương trình tiếp tuyến (C) điểm có hồnh độ xo = b) Tìm khoảng đồng biến nghịch biến hàm số Câu 2: (1 điểm) Tìm giá trị lớn giá trị nhỏ hàm số y = - 2x4 + 4x2 + đoạn [0; 2] Câu 3: (1 điểm) Cho hình tứ diện OABC có OA, OB, OC đơi vng góc với OA=OB=OC=a Gọi I trung điểm cạnh BC Tìm khoảng cách AI OC đồng thời xác định đường vng góc chung hai đường thẳng - HẾT Trang 3/3 - Mã đề thi 132 ĐÁP ÁN ĐỀ THI KSCL ĐẦU NĂM MƠN : TỐN 12 ( Năm học 2017-2018) I.Đáp án phần trắc nghiệm: Đề 132 C 15 A C 16 C D 17 B C 18 C D 19 D D 20 D C 21 A B 22 D B 23 A 10 B 24 A 11 B 25 C 12 A 26 A 13 B 27 D 14 A 28 B B 15 C A 16 B B 17 A B 18 A C 19 D C 20 A B 21 C D 22 A D 23 A 10 D 24 D 11 C 25 A 12 B 26 B 13 C 27 C 14 D 28 D Đề 209 Đề 357 C 15 D C 16 C B 17 A C 18 A C 19 B D 20 C B 21 D D 22 B A 23 D 10 A 24 A 11 B 25 B 12 C 26 A 13 D 27 D 14 B 28 A C 15 D B 16 A B 17 B A 18 A D 19 C C 20 D A 21 D C 22 C C 23 D 10 D 24 D 11 C 25 A 12 B 26 B 13 B 27 B 14 A 28 A Đề 485 II.Đáp án phần luận: Đề 132-357 Câu Nội dung Điểm Cho hàm số : y = −2x3 + x2 + (C) a) Viết phương trình tiếp tuyến (C) điểm có hồnh độ xo = 1a 0.5đ 0,25đ Ta có: x0 = y0 = y’ = – 6x2 + 2x f’(1) = – 0,25đ Suy phương trình tiếp tuyến: y – = – (x – 1) y = – 4x + b) Tìm khoảng đồng biến nghịch biến hàm số 1b 0.5đ 0,25đ y’ = – 6x2 + 2x , y’=0 x= x =1/3 Lập bảng biến thiên kết luận 0,25đ Hàm số đồng biến khoảng (0; 1/3) Hàm số nghịch biến khoảng (- ∞; 0) (1/3; +∞) Tìm giá trị lớn giá trị nhỏ hàm số y = - 2x4 + 4x2 + đoạn [0; 2] 1,0đ Ta có y’= -8x3 + 8x, y’= => x = ; x = - 1(L) ; x =1 0,25đ y(0) = 1, y (1) = 3, y(2) = - 15 Vậy max = x =1 = − 15 x =2 0,5đ [0;2] [0;2] 0,25đ A E H C F O K B 1,0đ I Hình 6.12 Ta có OC (AOB) Gọi K trung điểm OB, ta có hình chiếu AI lên (AOB) AK (vì IK (AOB)) Vẽ OH AK Dựng HE// OC cắt AI E Dựng EF // OH cắt OC F Khi EF đường vng góc chung AI OC Độ dài đoạn EF khoảng cách AI OC Xét tam giác vuông AOK ta có: 0.5đ 0.25đ 1 1 a2 a = Do đó: OH OH 2 2 2 5 OH OA OK a a a 2 Vì OH = EF, ta suy khoảng cách EF = OH = a 5 0.25đ Đề 209-485: Câu Nội dung Điểm Cho hàm số : y = 4x3 - x2 + (C) 1a 0.5đ a) Viết phương trình tiếp tuyến (C) điểm có hồnh độ xo = - 0,25đ Ta có: x0 = -1 y0 = -9 y’ = 12x2 -12x f’(-1) = 24 Suy phương trình tiếp tuyến: y + = 24(x +1) y = 24x +15 0,25đ b) Tìm cực trị hàm số 1b 0.5đ 0,25đ y’ = 12x2 -12x , y’=0 x= x =1 Lập bảng biến thiên kết luận 0,25đ Hàm số đạt cực đại x = đạt cực tiểu x = Tìm giá trị lớn giá trị nhỏ hàm số y = 2x4 - 4x2 - đoạn [0; 2] 1,0đ Ta có y’= 8x3 -8x, y’= => x = ; x = - 1(L) ; x =1 0,25đ y(0) = -2, y (1) = -4, y(2) = 14 Vậy max = 14 x =2 = − x =1 0,5đ [0;2] [0;2] 0,25đ A E H F O K B 1,0đ C I Hình 6.12 Ta có OC (AOB) Gọi K trung điểm OB, ta có hình chiếu AI lên (AOB) AK (vì IK (AOB)) Vẽ OH AK Dựng HE// OC cắt AI E Dựng EF // OH cắt OC F Khi EF đường vng góc chung AI OC Độ dài đoạn EF khoảng cách AI OC Xét tam giác vuông AOK ta có: 0.5đ 0.25đ 1 1 a2 a = Do đó: OH OH 2 2 2 5 OH OA OK a a a 2 Vì OH = EF, ta suy khoảng cách EF = OH = a 5 0.25đ