1. Trang chủ
  2. » Luận Văn - Báo Cáo

Đề Kscl Toán 12 Lần 1 Năm 2020 – 2021 Trường Yên Định 1 – Thanh Hóa.pdf

25 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 25
Dung lượng 620,98 KB

Nội dung

Trang 01/07 Mã đề 007 SỞ GD&ĐT THANH HÓA TRƯỜNG THPT YÊN ĐỊNH 1 ĐỀ KHẢO SÁT CHẤT LƯỢNG LỚP 12 LẦN 1 NĂM HỌC 2020 – 2021 MÔN THI TOÁN HỌC MÃ ĐỀ THI 007 Thời gian làm bài 90 phút (không kể thời gian phá[.]

SỞ GD&ĐT THANH HÓA TRƯỜNG THPT YÊN ĐỊNH MÃ ĐỀ THI: 007 Câu Trong khẳng định đây, khẳng định sai? A  kf  x  dx  k  f  x  dx,  k   B C Câu Câu ĐỀ KHẢO SÁT CHẤT LƯỢNG LỚP 12 - LẦN NĂM HỌC 2020 – 2021 MƠN THI: TỐN HỌC Thời gian làm bài: 90 phút (không kể thời gian phát đề)   f  x   g  x  dx   f  x  dx   g  x  dx  f '  x  dx  f  x   C D   f  x  g  x   dx   f  x  dx. g  x  dx Cho khối chóp có diện tích đáy B  chiều cao h  Thể tích khối chóp cho A 10 B 15 C 30 D 11 x Tập nghiệm bất phương trình  A  ;  B  2;   C  ; 2 D  2;   Câu Gọi M m giá trị lớn nhỏ hàm số y  x3  3x  đoạn  0;  Câu Khi tổng M  m A B Cho hàm số y  f  x  có đồ thị hình vẽ C D 16 Hàm số y  f  x  đồng biến khoảng đây? A  2;   Câu Câu Câu Câu B  ;0  C  2;  3x có phương trình x4 A y  B y  4 C x  4 Cho khối cầu có bán kính R  Thể tích khối cầu cho A 36 B 4 C 12 Với a, b số thực dương, a  Biểu thức log a  a 2b  D  0;  Đường tiệm cận ngang đồ thị hàm số y  D x  D 108 A  log a b B  log a b C  2log a b D 2log a b A  3;  B  \ 3 C  4;  D  3;  Tập xác định hàm số y  log 2021  x  3 Câu 10 Cho tập hợp A  0;1;2;3; 4;5 Số tập hợp gồm hai phần tử tập hợp A A P2 B 64 C C62 D A62 Câu 11 Cho hàm số y  f  x  liên tục có đạo hàm f   x    x  1  x    3x  , số điểm cực trị hàm số A B C Câu 12 Cho hàm số y  f  x  có bảng biến thiên hình vẽ dưới: D Trang 01/07 - Mã đề 007 Hàm số nghịch biến khoảng đây? A  ; 2  B  0;  C  0;   D  2;   Câu 13 Đồ thị hàm số có dạng đường cong hình vẽ? A y   x4  3x  B y  x4  3x  C y   x4  3x2  Câu 14 Cho hàm số y  f  x  xác định  \ 0 có bảng biến thiên hình vẽ D y  x4  3x2  Số nghiệm phương trình f  x    B C D A Cho khối lăng trụ có chiều cao 9, diện tích đáy Thể tích khối lăng trụ cho B 45 C 15 D 15 A 45 Câu 16 Cho hàm số y  f  x  có bảng biến thiên hình vẽ Câu 15 Giá trị cực đại hàm số A B 2 C D 1 Câu 17 Với C số tùy ý, họ nguyên hàm hàm số f  x   2cos x  x A 2sin x   C B 2sin x  x2  C C 2sin x  Câu 18 Tính thể tích khối hộp chữ nhật có kích thước a, 2a,3a A 2a3 Trang 02/07 – Mã đề 007 B a3 C 3a3 x2  C D 2sin x  D 6a3 x2  C Câu 19 Cho cấp số cộng (u n ) với u1  công sai d  Số hạng thứ 2021 cấp số cộng cho A 8083 B 8082 C 8.082.000 D 8079 Câu 20 Số giao điểm đồ thị hàm số y  x  x  với trục hoành A B C D Câu 21 Cho hình trụ có độ dài đường sinh , bán kính đáy Diện xung quanh hình trụ cho A 36 B 12 C 48 D 24 x1 Câu 22 Tập nghiệm phương trình  625 B  C 3 D 5 A 4 Câu 23 Cho khối nón có chiều cao h, bán kính đáy r Thể tích khối nón cho h r 4h r A B 2h r C h r D 3 Câu 24 Hàm số sau đồng biến tập xác định nó? x 3 A y      B y    x 2020  2019 x  2 3 C y  log  x   D y     e   Câu 25 Cho hàm số bậc ba y  f ( x) có đồ thị hình vẽ Số nghiệm phương trình f (2020 x  1)  A B C D Câu 26 Cho a số thực dương, a  , a3loga A 3a B 27 C D a3 2020 x Câu 27 Cho hàm số f  x   ln Tính tổng S  f  1  f      f   2020  ? x 1 2020 A S  ln 2020 B S  2020 C S  D S  2021 Câu 28 Tiếp tuyến đồ thị hàm số y  x3  x  điểm M  0;  3 có phương trình B y  x  C y  x  D y  x A y  x  Câu 29 Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% /tháng Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền (cả vốn ban đầu lãi) gần với số tiền đây, khoảng thời gian người khơng rút tiền lãi suất không thay đổi? A 102.424.000 đồng B 102.423.000 đồng C 102.016.000 đồng D 102.017.000 đồng Câu 30 Khối lăng trụ tam giác ABC A ' B ' C ' tích 99 cm3 Tính thể tích khối tứ diện A ' ABC A 22 cm3 B 44 cm3 C 11 cm3 D 33 cm3 Trang 03/07 – Mã đề 007 Câu 31 Đồ thị hàm số y  x2  có đường tiệm cận? x2  x  A B C D F    Tính F  3 ? Câu 32 Biết F  x  nguyên hàm hàm số f  x   x 1 A F  3  B F  3  ln  C F  3  ln  D F  3  Câu 33 Đáy lăng trụ đứng tam giác ABC ABC  tam giác ABC vng cân A có cạnh BC  a biết AB  3a Tính thể tích khối lăng trụ A 2a B a3 C a D a3 Câu 34 Tập hợp tất giá trị tham số m để phương trình x  m.2x1  3m   có hai nghiệm trái dấu A  0;  B  ;  C 1;   D 1;2  Câu 35 Hàm số sau không nguyên hàm hàm số y  x2  x  x 1 Câu 36 Phương trình log biệt? A A y  B y   x  3  x2  x 1 x 1 C y  x 2  x  x  1 x2 x 1  ;  1   1;    ? D y  x2  x 1 x 1 log  x  1  log  x  có tất nghiệm thực phân B C D   CSA   60 , SA  a, SB  2a, SC  4a Tính thể tích Câu 37 Cho khối chóp S ABC có  ASB  BSC khối chóp S ABC theo a? o 2a 8a3 4a a3 B C D 3 3 Câu 38 Cho hình chóp tứ giác S ABCD có tất cạnh 2a , O giao điểm AC BD Gọi M trung điểm AO Tính khoảng cách từ M đến mặt phẳng  SCD  theo a ? A a a a C d  D d  Câu 39 Đồ thị hàm số y  x  2mx  3m2 có ba điểm cực trị lập thành tam giác nhận G  0;  làm trọng tâm B m   C m  1 D m   A m  Câu 40 Cho hình hộp chữ nhật ABCD ABC D có AB  a; AD  2a; AA  2a Tính diện tích mặt cầu ngoại tiếp tứ diện ABBC  ? A 9 a B 4 a C 12 a D 36 a Câu 41 Cho khối chóp S ABCD có đáy hình thang vng A B Hai mặt phẳng  SAB   SAD  A d  a B d  vng góc với mặt phẳng đáy Biết AD  BC  2a BD  a Tính thể tích khối chóp S ABCD biết góc SB  ABCD  30 a3 a3 4a3 21 2a3 21 B VSABCD  C VSABCD  D VSABCD  Câu 42 Cho lăng trụ tam giác ABC A ' B ' C ' có góc hai mặt phẳng  A ' BC   ABC  60 AB  a Khi thể tích khối đa diện ABCC ' B ' 3 a3 3a B a C D A a3 4 A VSABCD  Trang 04/07 – Mã đề 007 Câu 43 Cho hình nón có chiều cao bán kính đáy Cắt hình nón cho mặt phẳng qua đỉnh cách tâm đáy khoảng 2, ta thiết diện có diện tích 11 16 11 B C D 10 A 20 3 Câu 44 Cho hàm số bậc f  x   x3  ax  bx  c , với a, b, c  Biết 4a  c  2b  2a  4b  8c   Số điểm cực trị hàm số g  x   f  x  A Câu 45 Cho hàm số g  x  f  x B C D có đạo hàm  , f   x  có đồ thị hình bên Hàm số f  x  1  x  x  2020 nghịch biến khoảng đây? A 1;  B  ; 1 C  1;1 D 1,  Câu 46 Cho hình chóp tứ giác S ABCD có đáy cạnh a tâm O Gọi M , N lầ lượt trung điểm SA BC Góc đường thẳng MN mặt phẳng ABCD 600 Tính tan góc đường thẳng MN mặt phẳng  SBD  A Câu 47 B C D Cho hàm số y  x   m  1 x   m  1 x  m  có đồ thị  Cm  với m tham số Tập S tập giá trị nguyên m  m    2021; 2021  để  Cm  cắt trục hoành điểm phân biệt A  2;  ; B , C cho hai điểm B, C có điểm nằm điểm nắm ngồi đường trịn có phương trình x2  y  Tính số phần tử S ? B 2020 A 4041 C 2021 D 4038 Câu 48 Cho khối lăng trụ tam giác ABC A ' B ' C ' gọi I , J , K trung điểm AB, AA ', B ' C ' Mặt phẳng  IJK  chia khối lăng trụ thành phần Gọi V1 thể tích phần chứa điểm B ' , V thể tích khối lăng trụ Tính V1 V 95 49 46 B C D 144 95 144 Câu 49 Gọi S tập hợp số tự nhiên có chữ số lập từ tập hợp A  0;1;2;3; 4;5;6;7;8;9 Chọn ngẫu nhiên số từ tập hợp S Tính xác suất để chọn số tự nhiên có tích chữ số 1400 A Trang 05/07 – Mã đề 007 B C 500 3.10 1500 Câu 50 Gọi S tập hợp tất giá trị nguyên tham số A D m 18 510 để phương trình 2 x  x  16 x  10  m   x  3x  m  có nghiệm x   1; 2 Tính tổng tất phần tử S B 46 C 391 D 782 A 368 3 - HẾT - Trang 06/07 – Mã đề 007 ĐÁP ÁN THAM KHẢO - https://toanmath.com/ 10 D A C C D A A B D C 26 27 28 29 30 31 32 33 34 35 B C C A D C B C D B 11 B 36 C 12 B 37 A 13 A 38 B 14 B 39 D 15 B 40 A 16 A 41 B 17 D 42 C 18 D 43 B 19 A 44 A 20 B 45 C 21 D 46 B 22 D 47 D 23 A 48 A 24 D 49 C 25 D 50 C Trang 07/07 – Mã đề 007 HƯỚNG DẪN GIẢI CHI TIẾT Câu 1: Chọn D Câu 2: Chọn A 1 Thể tích khối chóp cho V  B.h  5.6  10 3 Câu 3: Chọn C Ta có 3x   3x  32  x  Câu 4: Chọn C  x    0; 2 Ta có y '  x  x, y '     x  1  0; 2 y    2, y    4, y 1  0, M  4; m  , M  m  Câu 5: Chọn D Dựa vào đồ thị, ta thấy hàm số đồng biến khoảng  0;  Câu 6: Chọn A TXĐ: D   \ 4 3x 3x  nên đường thẳng y  tiệm cận ngang đồ thị hàm số y  x  x  x4 Ta có lim y  lim x  Câu 7: Chọn A 4 Thể tích khối cầu cho bằng: V   R   33  36 3 Câu 8: Chọn B Với a, b số thực dương, a  Ta có: log a  a 2b   log a a  log a b  log a a  log a b   log a b Câu 9: Chọn D Điều kiện x    x  Tập xác định D   3;   Câu 10: Chọn C Mỗi tập hợp gồm phần tử A tập hợp tổ hợp chập phần tử Do số tập hợp gồm hai phần tử tập hợp A C62 Câu 11: Chọn B 2 x 1   x  0,5  Ta có: f '  x     x     x  2 3  x   x  Bảng biến thiên: x   y' y 0,5 2 + +   f 1  f  2   Vậy hàm số có điểm cực trị Câu 12: Chọn B Dựa vào bảng biến thiên ta thấy hàm số nghịch biến  ;0   0;  Vậy đáp án đáp án B Câu 13: Chọn A Đường cong cho đồ thị hàm trùng phương dạng: y  ax  bx  c Đồ thị quay bề lõm xuống nên a   Ta loại đáp án B, D Đồ thị hàm số cắt trục Oy y  c   Ta loại đáp án C Câu 14: Chọn B Số nghiệm phương trình f  x     f  x   thẳng  : y  x y  y' số giao điểm đồ thị  C  : y  f  x  đường  +  1    y  Từ bảng biến thiên ta có đồ thị  C  : y  f  x  cắt đường thẳng  : y  nghiệm điểm nên phương trình cho có Câu 15: Chọn B Thể tích khối lăng trụ cho: V  B.h  5.9  45 (đvdt) Câu 16: Chọn A Hàm số đạt cực đại x   yCD  Câu 17: Chọn D Ta có  x2 f  x  dx    cos x  x  dx   cos xdx   xdx  2sin x   C Câu 18: Chọn D Ta có V  a.2a.3a  6a Câu 19: Chọn A u2021  u1  2020d   4.2020  8083 Câu 20: Chọn B x   x   Giải phương trình x  x     x     x    Vậy số giao điểm đồ thị hàm số y  x  x  với trục hoành Câu 21: Chọn D Diện tích xung quanh hình trụ S xq  2 rl  2 3.4  24 Câu 22: Chọn D Ta có x 1  625  x 1  54  x    x  Tập nghiệm phương trình x1  625 5 Câu 23: Chọn A Câu 24: Chọn D Hàm số mũ y  a x đồng biến tập xác định a  x Vì  2 3 2  nên hàm số y    đồng biến tập xác định e e   Câu 25: Chọn D  2020 x   a  a    Dựa vào đồ thị ta thấy phương trình f  2020 x  1    2020 x   b   b  1  2020 x   c c      x    x    x   1 a 2020 1 b Vậy phương trình f  2020 x  1  có ba nghiệm 2020 1 c 2020 Câu 26: Chọn B Ta có a 3loga  a log a  33  27 Câu 27: Chọn C f  x   ln 2020 x 1  f ' x    x 1 x  x  1 x x  2020  2020 1 Khi đó: S  f ' 1  f '     f '  2020         1 k 1  2021 2021 k 1  k Câu 28: Chọn C Ta có f '  x   x   f '    Vậy phương trình tiếp tuyến đồ thị hàm số y  x3  x  điểm M  0; 3 là: y  x  Câu 29: Chọn A Ta thấy cách gửi tiền theo đề gửi theo hình thức lãi kép Áp dụng cơng thức lãi kép ta có sau tháng, người lĩnh số tiền (cả vốn ban đầu lãi) 6 P6  P0 1  r   100 1  0, 4%   102.424.128, đồng Câu 30: Chọn D Gọi H hình chiếu A ' lên mặt phẳng  ABC  Khi đó: VABC A ' B 'C '  A ' H S ABC , VA ' ABC  Suy ra: A ' H S ABC VA ' ABC 1   VA ' ABC  99  33cm3 VABC A ' B ' C ' 3 Câu 31: Chọn C   x  2  x       x  Hàm số xác định     x  x    x  4 Tập xác định hàm số là: D   ; 2   2;   \ 4; 4 Ta có: lim y   đường thẳng y  đường tiệm cận ngang đồ thị hàm số x  lim y    đường thẳng x  đường tiệm cận đứng đồ thị hàm số x  4 lim y    đường thẳng x  4 đường tiệm cận đứng đồ thị hàm số x 4 Vậy đồ thị hàm số có đường tiệm cận Câu 32: Chọn B Ta có: F  x    f  x  dx   dx  ln x   C x 1 Mà F     C   F  x   ln x    F  3  ln  Câu 33: Chọn C Xét tam giác ABC vuông cân A có AB  AC  BC  a a2 Diện tích tam giác ABC bằng: S ABC  AB AC  2 Xét tam giác BAA ' vng A ta có: A ' A  A ' B  AB   3a   a  2a Câu 34: Chọn D Ta có: x  m.2 x 1  3m    x  2m.2 x  3m   1 Đặt x  t  0, phương trình cho trở thành: t  2mt  3m     1 có hai nghiệm trái dấu   có hai nghiệm phân biệt t1 ; t2 thỏa mãn:  t1   t2 hay:  '  m   3m  3   '   m  3m   0, m    S     2m  m      m      P  m   m    a f 1  1  2m  3m   m    Câu 35: Chọn B Ta có:  x 2  x   x  1 2    x  1  1  x  1  1 x  1         dx   dx   dx    dx  x  C 2    x 1    x x x        Khi đó: y x  x  x  x  1  1   x  nguyên hàm hàm số cho x 1 x 1 x 1 x  1   x  1 x  1   x2    x  nguyên hàm hàm số cho y x 1 x 1 x 1 x 1 y x  x  x  x    x   x  1  1    x  nguyên hàm hàm số cho x 1 x 1 x 1 x 1 Vậy hàm số y  x 2  x x2  x 1 nguyên hàm hàm số y  x 1  x  1 Câu 36: Chọn C x    x  3   Điều kiện:  x     x    x  4 x  x    Ta có: log  x  3  log  x  1  log  x   log  x    log x   log  x   log3  x  3 x   log  x    x  3 x   x *  x  1 loaïi  Trường hợp 1: Nếu x   *   x  3 x  1  x  x  x      x  Trường hợp 2: Nếu  x   x  3   loaïi  *   x  31  x   x  x  x      x  3  Kết luận: Phương trình cho có nghiệm thực Câu 37: Chọn A   CSA   600 nên tứ diện SAEF Lấy SB, SC hai điểm E , F cho SE  SF  SA  a Do  ASB  BSC tứ diện có cạnh a Gọi H chân đường cao hạ từ S xuống mặt phẳng  AEF  Thể tích khối tứ diện SAEF bằng: a a2 a3 1 VSAEF  SH S AEF  SA2  AH S AEF  a   3 3 12 VSAEF SE SF 2a Lại có:    VSABC  8.VSAEF  VSABC SB SC Câu 38: Chọn B Ta có: MC 3   d  M ;  SCD    d  O;  SCD   OC 2 CD  OH  CD   SOH    SCD    SOH  Kẻ OH  CD; OI  SH Khi  CD  SO Mà  SCD    SOH   SH ; OI  SH  OI   SCD  hay OI  d  O;  SCD   Có: SO  SA2  AO  4a  2a  a 2; OH  a Trong tam giác vuông SOH : OI  SO.OH SO  OH  a 2.a 2a  a  3 a a d  M ;  SCD    d  O;  SCD     2 Câu 39: Chọn D x  Ta có: y  x  2mx  3m  y '  x3  4mx    x   m  a m  Để đồ thị hàm số có ba điểm cực trị    A  0;3m  ; B   m ; 2m ; C 2  Khi tọa độ ba điểm cực trị là:  m ; 2m Vì ba điểm cực trị lập thành tam giác nhận G  0;7  làm trọng tâm nên 0  3 xG  xA  xB  xC   m   m   mà m  m    3 yG  y A  y B  yC 7 m  21 Câu 40: Chọn A Ta có: AB   BCC ' B '  AB  BC '  ABC ' vuông B Lại có: B ' C '   ABB ' A '  B ' C '  AB '  AB ' C ' vuông B ' Gọi I trung điểm A ' C  IA  IB  IB '  IC '  R Mặt khác, I tâm mặt cầu ngoại tiếp hình hộp chữ 3a nhật nên R  AB  AD  AA '2  2 Vậy diện tích mặt cầu ngoại tiếp tứ diện ABB ' C ' là: S  4 R  9 a Câu 41: Chọn B  SAB    ABCD   Vì  SAD    ABCD   SA   ABCD    SAB    SAD   SA Ta có: AB  BD  AD  SA  AB tan 300  S ABCD  a    2a   a a 3  AD  BC  AB   2a  a  a  3a 2 2 Thể tích khối chóp S ABCD là: 1 a 3a a 3 V  SA.S ABCD   3 Câu 42: Chọn C 10 Gọi M trung điểm BC , ABC nên AM  BC Tam giác A ' BC nên A ' M  BC  BC   A ' AM   A ' AM    A ' BC   A ' M   Ta có  A ' BC  ;  ABC    A ' M ; AM    A ' MA   A ' AM ABC AM      Xét AA ' M vng A, có tan  A ' MA  AA ' a 3a  AA '  tan 600  AM 2 Tứ giác BCC ' B ' hình chữ nhật có diện tích S BCC ' B '  BB '.BC  3a  AM  BC a  AM   BCC ' B '   d  A;  BCC ' B '   AM  Mà   AM  BB ' Thể tích khối chóp ABCC ' B ' VABCC ' B ' a3  d  A;  BCC ' B '   S BCC ' B '  Câu 43: Chọn B 11 Gọi S đỉnh, I tâm đường trịn đáy hình nón cho Mặt phẳng qua đỉnh hình nón cách tâm đáy khoảng cắt đường tròn đáy theo dây cung AB Gọi M trung điểm AB Qua I kẻ IH  SM  H  SM  Ta có: IA  IB  nên tam giác IAB cân I hay IM  AB 1 SI   IAB   SI  AB   Từ 1   suy AB   SIM   AB  IH mà IH  SM nên IH   SAB  Khoảng cách từ tâm đến mp  SAB  nên IH  Tam giác SIM vng I , có đường cao IH nên: 1 1 1  2   2  IM  2 IH SI IM IM 4 3 SM  SI  IM      SM    2 2 Tam giác IAM vuông M nên AM  IA2  IM  33 33  AB  3 Tam giác SAB có SM  AB nên diện tích tam giác SAB là: S SAB  1 33 11 SM AB   2 3 12 11 (đvtt) Vậy diện tích thiết diện Câu 44: Chọn D f  x   x3  ax  bx   f 1  a  b  f '  x   x  2ax  b  f ' 1   2a  b a  b   f 1  Theo đề bài,   3  2a  b   f ' 1  Khi đó, đồ thị hàm số y  f  x  có dạng hình vẽ bên:   Như vậy, hàm số y  f  x  có tất 11 cực trị Chọn D Câu 45: Chọn B Với t   x, ta có hàm số y  f  t  có đồ thị hình vẽ 13

Ngày đăng: 06/04/2023, 21:25