Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm s[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > B m > 2e C m ≥ e−2 D m > e2 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 300 B 450 C 360 D 600 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) B Hàm số nghịch biến (0; +∞) C Hàm số nghịch biến R D Hàm số đồng biến R Câu Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động? A S = 12 (m) B S = 24 (m) C S = 20 (m) D S = 28 (m) Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = sin x B y = x3 − 2x2 + 3x + 3x + C y = D y = tan x x−1 Câu R6 Công thức sai? R A sin x = − cos x + C B a x = a x ln a + C R R C e x = e x + C D cos x = sin x + C x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = B y = − C y = −1 D y = R R R R 2 Câu Hàm số sau khơng có cực trị? A y = cos x C y = x4 + 3x2 + B y = x3 − 6x2 + 12x − D y = x2 2x + 2017 (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = B Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng C Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 D Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng Câu Cho hàm số y = Câu 10 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D y+2 z x−1 Câu 11 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − 2y − = B (P) : x + y + 2z = C (P) : x − y − 2z = D (P) : x − y + 2z = Trang 1/5 Mã đề 001 Câu 12 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số đồng biến khoảng (−3; 1) B Hàm số nghịch biến khoảng (1; +∞) C Hàm số nghịch biến khoảng (−∞; −3) D Hàm số nghịch biến khoảng (−3; 1) Câu 13 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − m2 − 12 4m2 − m2 − 12 A B C D 2m 2m 2m m Câu 14 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 A 3(m2 ) (m2 ) D (m ) B (m2 ) C √ Câu 15 Cho a > a , Giá trị alog a bằng? √ A B C D Câu 16 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A Không tồn m B m < C m < D < m < 3 Câu 17 Một mặt cầu có diện tích 4πR thể tích khối cầu A πR3 B πR3 C 4πR3 D πR3 Câu 18 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = [ -ln3; +∞) C S = (−∞; ln3) D S = [ 0; +∞) Câu 19 Tính I = R1 √3 7x + 1dx 21 20 60 45 A I = B I = C I = D I = 28 28 Câu 20 Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường tròn B Đường elip C Đường parabol D Đường hypebol p Câu 21 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếu < x < π y > − 4π2 C Nếu < x < y < −3 D Nếux = y = −3 Câu 22 Trong khơng gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ C R = 21 D R = A R = B R = 29 Câu 23 Hàm số sau đồng biến R? A y = x2 B y = tan √ x √ C y = x4 + 3x2 + D y = x2 + x + − x2 − x + Rm dx Câu 24 Cho số thực dươngm Tính I = theo m? x + 3x + m+1 m+2 2m + m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 2m + m+2 m+1 Câu 25 Kết đúng? R R sin3 x 2 A sin x cos x = −cos x sin x + C B sin x cos x = − + C 3 R R sin x C sin2 x cos x = + C D sin2 x cos x = cos2 x sin x + C Trang 2/5 Mã đề 001 x−3 y−6 z−1 = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: y z−1 x y−1 z−1 x−1 = = B = = A −1 −3 −1 x y−1 z−1 x y−1 z−1 C = = D = = −3 −1 −3 Câu 27 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc MN mặt phẳng √ sin góc MN và√mặt phẳng (S BD) √ (ABCD) 60 Tính 10 A B C D 5 Câu 28 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R (mặt nước thấp nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số √ √ √h √ 2π − π− 2π − 3 B C D A 12 12 Câu 29 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) A B C D 4 4 Câu 30 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường tròn đáy, cạnh AD, BC khơng phải đường sinh hình trụ√(T ) Tính cạnh hình vng √ 3a 10 B 6a C 3a D 3a A Câu 31 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ B C D A Câu 26 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : Câu 32 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình A (x + 1)2 + (y − 1)2 + (z − 2)2 = B (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 √ C (x + 1)2 + (y − 1)2 + (z − 2)2 = D (x − 1)2 + (y + 1)2 + (z + 2)2 = Câu 33 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi là: √ A 2π B 8π C 3π D 4π x2 Câu 34 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 64 128 32 Câu 35 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + n + A log2 2250 = B log2 2250 = n n 2mn + 2n + 3mn + n + C log2 2250 = D log2 2250 = m n −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 36 Trong không gian với hệ trục tọa độ Oxyz cho → −u + 3→ −v tơ 2→ → − −v = (1; 13; 16) −u + 3→ −v = (1; 14; 15) A u + 3→ B 2→ −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (3; 14; 16) C 2→ D 2→ Trang 3/5 Mã đề 001 Câu 37 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2abc B P = 2a+b+c C P = 2a+2b+3c D P = 26abc π cos x Câu 38 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 6π 3π 6π A ln + B ln + C ln + D 5 5 ′ ′ ′ Câu 39 Cho hình lăng trụ đứng ABC.A B C có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ B 9a3 C 6a3 D 3a3 A 4a3 Câu 40 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = |x − 2x|dx − |x2 − 2x|dx B 1 R3 R2 C R3 |x2 − 2x|dx = (x2 − 2x)dx + |x2 − 2x|dx = − D R3 R3 (x2 − 2x)dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx Câu 41 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = B P = + 2(ln a)2 C P = 2loga e D P = ln a Câu 42 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (−1; 1) C (1; 5) D (−3; 0) Câu 43 Chọn mệnh đề mệnh đề sau: R R e2x +C B x dx =5 x + C A e2x dx = R R (2x + 1)3 + C D sin xdx = cos x + C C (2x + 1)2 dx = r 3x + Câu 44 Tìm tập xác định D hàm số y = log2 x−1 A D = (−1; 4) B D = (1; +∞) C D = (−∞; −1] ∪ (1; +∞) D D = (−∞; 0) Câu 45 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = (x − 2x)dx − (x2 − 2x)dx B C 1 R3 R2 R3 1 R3 R2 D R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx + |x2 − 2x|dx = − |x2 − 2x|dx R3 (x2 − 2x)dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx Câu 46 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích toàn phần (T ) A 6π B 12π C 10π D 8π Câu 47 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Trang 4/5 Mã đề 001 Câu 48 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ B 4a3 C 3a3 D 6a3 A 9a3 Câu 49 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = ln a B P = C P = + 2(ln a)2 D P = 2loga e Câu 50 Chọn mệnh đề mệnh đề sau: A Nếu a > a x = ay ⇔ x = y B Nếu a > a x > ay ⇔ x < y C Nếu a < a x > ay ⇔ x < y D Nếu a > a x > ay ⇔ x > y - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001