Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hai số thực x, y thỏa mãn hệ điều kiện x[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếu < x < y < −3 C Nếux > thìy < −15 D Nếu < x < π y > − 4π2 Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A loga x > loga y B log x > log y C ln x > ln y D log x > log y a a Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = − B y = +1− ln ln 5 ln ln x x C y = + D y = −1+ ln 5 ln ln Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B 2πR3 C πR3 D 6πR3 Câu Hàm số sau đồng biến R? A y = tan x B y = x√4 + 3x2 + √ C y = x D y = x2 + x + − x2 − x + x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = − B y = C y = −1 D y = R R R R 2 Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = (−∞; ln3) C S = [ -ln3; +∞) D S = [ 0; +∞) Câu Hình nón có bán kính đáy R, đường sinh l diện √ tích xung quanh √ 2 D 2π l2 − R2 A πRl B 2πRl C π l − R Câu Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln(ab2 ) = ln a + (ln b)2 B ln( ) = b ln b C ln(ab) = ln a ln b D ln(ab ) = ln a + ln b Câu 10 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B 4π C π D 2π Câu 11 Cho a > a , Giá trị alog A B √ a bằng? C D √ Câu 12 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 A (m2 ) B (m2 ) C (m ) D 3(m2 ) x Câu 13 Cho x, y, z ba số thực khác thỏa mãn = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Trang 1/5 Mã đề 001 a3 Câu 14 Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 450 B 1350 C 300 D 600 Câu 15 Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B − ln − C − ln D ln − A ln + 2 2 Câu 16 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x đường thẳng y = x A B C D − 6 Câu 17 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ B m ∈ (−1; 2) C m ∈ (0; 2) D m ≥ A −1 < m < Câu 18.√Hình nón có bán kính √ đáy R, đường sinh l diện tích xung quanh 2 A 2π l − R B π l2 − R2 C 2πRl D πRl Rm dx Câu 19 Cho số thực dươngm Tính I = theo m? x + 3x + m+1 2m + m+2 m+2 ) B I = ln( ) C I = ln( ) D I = ln( ) A I = ln( 2m + m+2 m+2 m+1 Câu 20 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; 3; 1) B M ′ (2; −3; −1) C M ′ (2; 3; 1) D M ′ (−2; −3; −1) Câu 21 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B −6 C D Câu 22 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m > B m ≥ C m ≤ D m < Câu 23 Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R? A m > e2 B m ≥ e−2 C m > 2e D m > Câu 24 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(20; 15; 7) B C(8; ; 19) C C(6; −17; 21) D C(6; 21; 21) Câu 25 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, đường cao hình chóp a Tính góc hai mặt phẳng (S AC) (S AB) A 450 B 600 C 360 D 300 Câu 26 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 − 4x B x3 + − 4x + C 2x3 − 4x4 D x3 − x4 + 2x A x3 + 4 Câu 27 Cho hàm số y = x −3x Tính y′ 2 A y′ = (2x − 3)5 x −3x ln B y′ = (2x − 3)5 x −3x 2 C y′ = x −3x ln D y′ = (x2 − 3x)5 x −3x ln Câu 28 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 43.091.358 đồng B 48.621.980 đồng C 46.538667 đồng D 45.188.656 đồng Trang 2/5 Mã đề 001 Câu 29 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ a 3a 10 3a 13 3a 13 B C D A 26 20 13 Câu 30 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (1; −2; 7) B (4; −6; 8) C (−2; 2; 6) D (−2; 3; 5) √ x− x+2 có tất tiệm cận? Câu 31 Đồ thị hàm số y = x2 − A B C D Câu 32 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√tròn nội tiếp tam giác ABC √ √ √ A B C D 1 Câu 33 Tìm tất giá trị tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có 3 hai điểm cực trị nằm phía bên phải trục tung? A m < B m > C m > m < D m > π R2 Câu 34 Biết sin 2xdx = ea Khi giá trị a là: A ln B C D − ln Câu 35 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) Tính thể tích khối vng góc với mặt phẳng (ABC), diện tích tam giác S BC a √ √ √ chóp S ABC √ 3 3 a 15 a a 15 a 15 B C D A 16 Câu 36 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B R3 |x − 2x|dx = − C D R3 R2 (x − 2x)dx + R3 1 R3 R2 |x2 − 2x|dx = |x2 − 2x|dx − |x − 2x|dx = (x − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx R3 (x2 − 2x)dx Câu 37 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ cạnh AB, AD Tính khoảng √ √ √ cách hai đường thẳng a 15 3a 30 3a 3a A B C D 10 3x Câu 38 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = −2 C Không tồn m D m = Câu 39 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α Trang 3/5 Mã đề 001 √ √ 15 15 B C D A 10 Câu 40 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + 3mn + n + A log2 2250 = B log2 2250 = m n 2mn + n + 2mn + n + C log2 2250 = D log2 2250 = n n Câu 41 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 e2x + C B (2x + 1)2 dx = +C A e2x dx = R R C x dx =5 x + C D sin xdx = cos x + C √ Câu 42 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = 2πRl + 2πR2 B S = πRl + πR2 C S = πRl + 2πR2 D S = πRh + πR2 Câu 43 Hàm số hàm số sau có đồ thị hình vẽ bên C y = −x4 + 2x2 D y = −x4 + 2x2 + A y = −2x4 + 4x2 B y = x3 − 3x2 cos x π Câu 44 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 3π 6π 6π B ln + C ln + D ln + A 5 5 Câu 45 Gọi giá trị lớn giá trị nhỏ hàm số y = x − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 46 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B R3 |x − 2x|dx = − C D R3 R2 (x − 2x)dx + |x2 − 2x|dx = (x2 − 2x)dx + R3 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − Câu 47 Biết π R2 (x2 − 2x)dx R2 R3 (x2 − 2x)dx |x2 − 2x|dx sin 2xdx = ea Khi giá trị a là: A B C − ln D ln Câu 48 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = 0.√ √ A R = B R = 15 C R = 14 D R = Câu 49 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 33π 31π A B C 6π D 5 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ → − → − −u + 3→ −v = (3; 14; 16) A u + v = (1; 13; 16) B 2→ −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (1; 14; 15) C 2→ D 2→ Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001