Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Với giá trị nào của tham số m thì tiếp tuyến[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = −15 C m = 13 D m = −2 Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (−1; 2) B m ∈ (0; 2) C m ≥ D −1 < m < Câu Hàm số sau khơng có cực trị? A y = x3 − 6x2 + 12x − B y = x2 C y = x + 3x + D y = cos x Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B ln x > ln y C log x > log y D loga x > loga y a a Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > 2e B m ≥ e−2 C m > D m > e2 −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → → − → − −u | = √3 −u | = A | u | = B | u | = C |→ D |→ Câu Đồ thị hàm số sau có vô số đường tiệm cận đứng? 3x + A y = x3 − 2x2 + 3x + B y = x−1 C y = sin x D y = tan x Câu Cho hình√chóp S ABCcó cạnh đáy a cạnh bên√bằng b Thể tích khối chóp là: a2 3b2 − a2 3a2 b A VS ABC = B VS ABC = 12 q 12 √ √ a2 b2 − 3a2 3ab2 C VS ABC = D VS ABC = 12 12 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln B − ln − C ln − D ln + 2 2 Câu 10 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = −7 D m = a3 Câu 11 Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 450 B 300 C 1350 D 600 Câu 12 Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −5 B f (−1) = −3 C f (−1) = D f (−1) = −1 Trang 1/5 Mã đề 001 Câu 13 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A −2 ≤ m ≤ B < m < C −2 < m < D m = Câu 14 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B 4π C π D 2π Câu 15 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 B [22; +∞) C ( ; +∞) D ( ; 2] [22; +∞) A [ ; 2] [22; +∞) 4 R Câu 16 Tính nguyên hàm cos 3xdx 1 A sin 3x + C B − sin 3x + C C −3 sin 3x + C D sin 3x + C 3 √ ′ ′ ′ ′ Câu 17 Cho lăng trụ ABC.A B C có đáy a, AA = 3a Thể tích khối √ √ lăng trụ cho là: A 3a3 B 3a3 C a3 D 3a3 Câu 18 Hình nón có bán kính đáy R, đường sinh l diện √ √ tích xung quanh 2 D π l2 − R2 A πRl B 2πRl C 2π l − R √ Câu 19 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành 10π π C V = D V = π A V = B V = 3 Câu R20 Kết đúng? A sin2 x cos x = −cos2 x sin x + C R sin3 x C sin2 x cos x = − + C sin2 x cos x = cos2 x sin x + C R sin3 x D sin2 x cos x = + C B R Câu 21 Cho a > 1; < x < y Bất đẳng thức sau đúng? A ln x > ln y B log x > log y C loga x > loga y D log x > log y a a đúng? x B Hàm số đồng biến R D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu 22 Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến R C Hàm số nghịch biến (0; +∞) Câu 23 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ -ln3; +∞) B S = (−∞; 2) C S = (−∞; ln3) D S = [ 0; +∞) Câu 24 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ a 2a 3a 5a A √ B √ C D 5 Câu 25 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu 26 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ A B C D Trang 2/5 Mã đề 001 Câu 27 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 A 2x3 − 4x4 B x3 − x4 + 2x C x3 + − 4x D x3 + − 4x + 4 Câu 28 Đồ thị hàm số sau có điểm cực trị: A y = x4 − 2x2 − B y = x4 + 2x2 − C y = 2x4 + 4x2 + D y = −x4 − 2x2 − Câu 29 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường tròn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình vng √ √ 3a 10 B 6a C A 3a D 3a Câu 30 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình A (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 B (x + 1)2 + (y − 1)2 + (z − 2)2 = √ C (x − 1)2 + (y + 1)2 + (z + 2)2 = D (x + 1)2 + (y − 1)2 + (z − 2)2 = Câu 31 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 13 a 3a 10 3a 13 A B C D 26 20 13 x3 Câu 32 Tìm tất giá trị tham số m để hàm số y = (m + 2) − (m + 2)x2 + (m − 8)x + m5 nghịch biến R A m < −3 B m ≤ −2 C m ≥ −8 D m ≤ Câu 33 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 2,075 B 8,9 C 33,2 D 11 Câu 34 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng B 36080251 đồng C 36080255 đồng D 36080254 đồng Câu 35 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 B 3a C 4a D 6a3 A 9a −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 36 Trong khơng gian với hệ trục tọa độ Oxyz cho → −u + 3→ −v tơ 2→ → − −v = (1; 13; 16) −u + 3→ −v = (3; 14; 16) A u + 3→ B 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (2; 14; 14) C 2→ D 2→ Câu 37 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ =√2a Gọi α số đo góc DB′ Tính giá trị cos α √ hai đường thẳng AC √ A B C D 2 Câu 38 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x + x, trục Oxvà hai đường thẳng x = −1; x = 25 29 23 27 A B C D 4 4 √ 2x − x + Câu 39 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Trang 3/5 Mã đề 001 Câu 40 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −10 B m = C m = m = −16 D m = Câu 41 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 11 17 10 31 21 10 16 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 42 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 3a3 B 12a3 C 6a3 D 4a3 Câu 43 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 e2x A (2x + 1)2 dx = + C B e2x dx = +C R R C sin xdx = cos x + C D x dx =5 x + C Câu 44 Biết π R2 sin 2xdx = ea Khi giá trị a là: A ln B − ln C D Câu 45 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vuông góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 A B C D 10 Câu 46 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > B m > m < − C m < −2 D m > m < −1 Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = + 2t x = − 2t x = −1 + 2t x = + 2t y = −2 − 3t y = −2 + 3t y = −2 + 3t y = + 3t B C D A z = − 5t z = −4 − 5t z = − 5t z = + 5t Câu 48 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = 2loga e B P = C P = ln a D P = + 2(ln a)2 Câu 49 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 + B y = −2x4 + 4x2 C y = x3 − 3x2 D y = −x4 + 2x2 Câu 50 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 3a3 B 4a3 C 6a3 D 9a3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001