LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d x = 1 + 2ty = 2 + (m − 1)t[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , −1 B m , C m , D m = √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I √ trung điểm cạnh√CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng (A1 BK) √ a a 15 a B C D a 15 A √ x x Câu Tìm nghiệm phương trình = ( 3) A x = B x = C x = D x = −1 √ Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 C ( ; +∞) D (0; 1) A (1; +∞) B (0; ) 4 √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận B Khơng có tiệm cận ngang có tiệm cận đứng C Có tiệm cận ngang khơng có tiệm cận đứng D Có tiệm cận ngang tiệm cận đứng Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A −z x y Câu Cho x, y, z ba số thực khác thỏa mãn = = 10 Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D Câu Cho hàm số y = f (x) có đồ thị hình vẽ Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt A −4 < m < −3 B −4 < m ≤ −3 C −4 ≤ m < −3 D m > −4 R Câu 10 6x5 dxbằng A x6 + C B 6x6 + C C x6 + C D 30x4 + C Câu 11 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 1) −n = (2; −3; 4) −n = (2; 3; −4) −n = (−2; 3; 4) A → B → C → D → Câu 12 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 A B −16 C D 16 Câu 13 Tìm đạo hàm hàm số: y = (x + 1) Trang 1/5 Mã đề 001 1 1 3 − A (x + 1) B x C (2x) D 3x(x + 1) Câu 14 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A x = B x = −2 C M(1; −2) D M(−2; −4) Câu 15 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (0; 1) B (−∞; 1) C (−1; 0) Câu 16 Cho hàm số có bảng biến thiên: Khẳng định sau đúng? A Hàm số đạt cực đại C Hàm số đạt cực đại D (1; +∞) B Hàm số đạt cực đại D Hàm số đạt cực đại Câu 17 Tập nghiệm bất phương trình x+1 < A (−∞; 1] B [1; +∞) C (1; +∞) D (−∞; 1) Câu 18 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 90◦ B 45◦ C 60◦ D 30◦ Câu 19 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n4 = (1; 1; −1) B → n3 = (1; 1; 1) C → n2 = (1; −1; 1) D → n1 = (−1; 1; 1) Câu 20 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ A 62 a3 B 42 a3 C 2a3 D 22 a3 R4 R4 R4 Câu 21 Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A B C −1 D Câu 22 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) B 52 C 41 D 12 A 34 Câu 23 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = πxπ B y′ = πxπ−1 C y′ = π1 xπ−1 D y′ = xπ−1 Câu 24 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 B 17 C 354 D 359 A 35 i R2 R2h Câu 25 Nếu f (x)dx = 21 f (x) − dx A B C −2 D Câu 26 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 225 B 210 C 105 D 30 Câu 27 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = xπ−1 B y′ = πxπ C y′ = πxπ−1 D y′ = xπ−1 π Câu 28 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; −2; 3) B (−1; 2; 3) C (−1; −2; −3) D (1; 2; −3) Câu 29 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D Trang 2/5 Mã đề 001 Câu 30 Cho khối chóp S ABC có đáy tam giác vuông cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B 12 C D Câu 31 Tập nghiệm bất phương trình log(x − 2) > A (12; +∞) B (2; 3) C (3; +∞) D (−∞; 3) x2 − 16 x2 − 16 < log7 ? Câu 32 Có số nguyên x thỏa mãn log3 343 27 A 92 B 184 C 186 D 193 Câu 33 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 A f (x) = −sinx + x2 + C B f (x) = sinx + + C R R x2 + C D f (x) = sinx + x2 + C C f (x) = −sinx + Câu 34 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 2 Câu 35 Cho số phức z thoả mãn (1 + z) số thực Tập hợp điểm M biểu diễn số phức z A Hai đường thẳng B Parabol C Đường tròn D Một đường thẳng Câu 36 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π C 25π D A 5π B Câu 37 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 A √ B √ C √ D 13 Câu 38 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 22 C r = D r = 20 z Câu 39 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác B Tam giác OAB tam giác cân C Tam giác OAB tam giác nhọn D Tam giác OAB tam giác vuông √ Câu 40 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 A < |z| < B |z| < C ≤ |z| ≤ D |z| > 2 2 √ Câu 41 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = −2 − 3i Câu 42 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 43 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 11 17 10 16 10 31 21 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Trang 3/5 Mã đề 001 Câu 44 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = − 2t y = −2 + 3t A z = + 5t x = + 2t y = −2 + 3t B z = − 5t x = −1 + 2t y = + 3t C z = −4 − 5t x = + 2t y = −2 − 3t D z = − 5t Câu 45 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ B R = C R = 14 D R = A R = 15 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 46 Trong không gian với hệ trục tọa độ Oxyz cho → −u + 3→ −v tơ 2→ −u + 3→ −v = (2; 14; 14) A 2→ −u + 3→ −v = (3; 14; 16) B 2→ −u + 3→ −v = (1; 13; 16) C 2→ −u + 3→ −v = (1; 14; 15) D 2→ √ Câu 47 Tính đạo hàm hàm số y = log4 x2 − A y′ = 2(x2 x − 1) ln B y′ = √ x2 − ln C y′ = Câu 48 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A ln + 6π B 3π ln + C (x2 x − 1)log4 e D y′ = (x2 x − 1) ln cos x π F(− ) = π Khi giá trị sin x + cos x 6π D 6π ln + 5 Câu 49 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 50 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A B −2 C D −4 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001