LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình lăng trụ đứng ABC A1B1C1 có AB = a, AC = 2a, AA1 = 2a √ 5 và B̂AC = 1200[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I trung điểm cạnh√CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng (A1 BK) √ √ a 15 a a C D A a 15 B 3 Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 8π 32 32π A V = B V = C V = D V = 5 Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận ngang có tiệm cận đứng B Có tiệm cận ngang tiệm cận đứng C Có tiệm cận ngang khơng có tiệm cận đứng D Khơng có tiệm cận Câu Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng d : y+2 z x−1 = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − 2y − = B (P) : x − y − 2z = C (P) : x + y + 2z = D (P) : x − y + 2z = Câu Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 + x2 y = x2 +3x+mcắt nhiều điểm A −2 < m < B m = C −2 ≤ m ≤ D < m < Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 B m < C m < D Không tồn m A < m < 3 √ Câu Đạo hàm hàm số y = log 3x − là: 2 B y′ = C y′ = D y′ = A y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu Cho lăng trụ đứng ABC.A′ B′C ′ có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng 600 Biết diện tích tam giác ∆A′ BC 2a2 Tính thể tích V khối lăng trụ ABC.A′ B′C ′ √ √ 2a3 a3 A V = B V = 3a3 C V = D V = a3 3 − −a = (−1; 1; 0), → −c = (1; 1; 1) Trong Câu 10 Trong không gian Oxyz, cho ba véctơ → b = (1; 1; 0), → mệnh đề sau, mệnh đề sai? → − − → − − A b ⊥→ a B b ⊥→ c √ −a = C → Câu 11 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (1; +∞) B (−∞; 1) C (−1; 0) √ −c = D → D (0; 1) Trang 1/5 Mã đề 001 Câu 12 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A x = −2 B x = C M(1; −2) D M(−2; −4) Câu 13 Tính đạo hàm hàm số y = 2023 x A y′ = 2023 x B y′ = 2023 x ln x C y′ = 2023 x ln 2023 D y′ = x.2023 x−1 Câu 14 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π , Tính diện tích tam giác ABC lượt hình trịn xoay tích 672π, 13 A S = 84 B S = 364 C S = 96 D S = 1979 Câu 15 Cho cấp số nhân (un ) với u1 = − ; u7 = −32 Tìm q? A q = ±4 B q = ±2 C q = ± D q = ±1 π R4 Câu 16 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 + 16π − A 16 π2 + 16π − 16 B 16 π2 + 15π C 16 π2 − D 16 Câu 17 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln 32 B ln 32 C ln a D ln 6a2 Câu 18 Cho cấp số nhân (un ) với u1 = công bội q = 12 Giá trị u3 A 72 B 14 C 21 D Câu 19 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = πxπ B y′ = πxπ−1 C y′ = xπ−1 D y′ = π1 xπ−1 Câu 20 Tập nghiệm bất phương trình log(x − 2) > A (2; 3) B (12; +∞) C (−∞; 3) D (3; +∞) Câu 21 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n4 = (1; 1; −1) B → n2 = (1; −1; 1) C → n3 = (1; 1; 1) D → n1 = (−1; 1; 1) Câu 22 Cho khối lập phương có cạnh Thể tích khối lập phương cho A B C 83 D Câu 23 Cho khối nón có đình S , chiều cao thể tích 800π Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, đường tròn đáy đến mặt √ phẳng (S AB) √ khoảng cách từ tâm 24 A 24 C B D Câu 24 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx A 43 B 32 C D Câu 25 Tập nghiệm bất phương trình x+1 < A (−∞; 1] B (1; +∞) C [1; +∞) D (−∞; 1) Câu R26 Cho hàm số f (x) = cosx + x Khẳng định nàoRdưới đúng? A f (x) = sinx + x2 + C B f (x) = −sinx + x2 + C R R x x2 C f (x) = −sinx + + C D f (x) = sinx + + C 2 Câu 27 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (−1; 2; 3) B (1; −2; 3) C (1; 2; −3) D (−1; −2; −3) Trang 2/5 Mã đề 001 Câu 28 Xét số phức z thỏa mãn z − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 18 + B 14 C 11 + D 28 Câu 29 Cho khối lập phương có cạnh Thể tích khối lập phương cho A B C D Câu 30 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 90 B 89 C 49 D 48 Câu 31 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = R B d = C d < R D d > R Câu 32 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 33 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A 17 B C 15 D Câu 34 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x + y − = C x + y − = D x − y + = Câu 35 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B 10 C D Câu 36 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A π B 2π C 3π D 4π √ Câu 37 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = 1+i Câu 38 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = z mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 15 25 25 A S = B S = C S = D S = 4 2 Câu 39 Gọi z1 z2 nghiệm phương trình z − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức √ w = x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k A w = √ 27 − i hoặcw = 27√+ i B w = + √27 hoặcw = − √27 C w = − 27 − i hoặcw = − 27 + i D w = + 27i hoặcw = − 27i Câu 40 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 z+i+1 Câu 41 Tìm tập hợp điểm M biểu diễn số phức z cho w = số ảo? z + z + 2i A Một đường thẳng B Một Elip C Một Parabol D Một đường tròn Trang 3/5 Mã đề 001 √ Câu 42 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? A |z| > B < |z| < 2 C |z| < D ≤ |z| ≤ 2 Câu 43 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080255 đồng C 36080253 đồng B 36080251 đồng D 36080254 đồng Câu 44 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 4a3 B 3a3 C 12a3 Câu 45 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A 6π Câu 46 Biết B ln + π R2 6π C D 6a3 π cos x F(− ) = π Khi giá trị sin x + cos x 3π ln + D 6π ln + 5 sin 2xdx = ea Khi giá trị a là: A ln B C − ln D Câu 47 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 23 29 27 A B C D 4 4 Câu 48 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x > y B Nếu a > a x = ay ⇔ x = y C Nếu a < a x > ay ⇔ x < y D Nếu a > a x > ay ⇔ x < y 3x Câu 49 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = −2 B m = C m = D Không tồn m d Câu 50 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B a C a D 2a Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001