LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y = 0; x = 2 Tính thể tích V củ[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32π 8π 32 A V = B V = C V = D V = 3 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B ln − C − ln D ln + A − ln − 2 2 √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận ngang có tiệm cận đứng B Có tiệm cận ngang tiệm cận đứng C Khơng có tiệm cận D Có tiệm cận ngang khơng có tiệm cận đứng √ Câu Đạo hàm hàm số y = log 3x − là: 6 A y′ = B y′ = D y′ = C y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m > B m ≥ −1 C m ≥ D m ≥ 2x + 2017 (1) Mệnh đề đúng? Câu Cho hàm số y = x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 B Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng C Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = D Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng √ x Câu Tìm nghiệm phương trình x = ( 3) A x = B x = −1 C x = D x = x−1 y+2 z Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vuông góc với d A (P) : x − 2y − = B (P) : x − y − 2z = C (P) : x − y + 2z = D (P) : x + y + 2z = Câu Tìm đạo hàm hàm số: y = (x + 1) 1 1 − 3 A 3x(x + 1) B x C (x + 1) D (2x) 2 x+1 Câu 10 Đồ thị hàm số y = (C) có đường tiệm cận x−2 A y = x = B y = x = C y = x = −1 D y = −1 x = Trang 1/5 Mã đề 001 Câu 11 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số nguyên dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Câu 12 Một hình trụ có bán kính đáy r = a, độ dài đường sinh l = 2a Tính diện tích xung quanh hình trụ A 5πa2 B 6πa2 C 4πa2 D 2πa2 Câu 13 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (1; +∞) B (−1; 0) C (−∞; 1) D (0; 1) Câu 14 Cần chọn người cơng tác từ tổ có 30 người, số cách chọn D C30 A 330 B 10 C A330 Câu 15 Cho hàm số y = f (x) có đạo hàm f ′ (x) = x2 − 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến khoảng A (−2; 0) B (0; 2) C (−∞; −2) D (2; +∞) Câu 16 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M cho 3MA2 + 2MB2 − MC đạt giá trị nhỏ 3 3 B M( ; ; −1) C M(− ; ; −1) D M(− ; ; −1) A M(− ; ; 2) 4 4 R4 R4 R4 Câu 17 Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A −1 B C D Câu 18 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) B 52 C 21 D 43 A 41 Câu 19 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 210 B 30 C 105 D 225 Câu 20 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn |z + 2i| = đường trịn Tâm đường trịn có tọa độ A (0; 2) B (0; −2) C (2; 0) D (−2; 0) Câu 21 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A 17 B C D 15 Câu 22 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (1; 3) B (0; 2) C (−∞; 1) D (3; +∞) Câu 23 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; −6) B (7; 6) C (6; 7) D (−6; 7) Câu 24 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ A 62 a3 B 22 a3 C 42 a3 D 2a3 Câu 25 Trong không gian Oxyz, cho đường thẳng d : x−1 = y−2 = −1 A M(2; −1; −2) B P(1; 2; 3) C N(2; 1; 2) z+3 −2 Điểm thuộc d? D Q(1; 2; −3) Câu 26 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 30◦ B 90◦ C 60◦ D 45◦ Trang 2/5 Mã đề 001 R Câu 27 Cho dx = F(x) + C Khẳng định đúng? x 1 B F ′ (x) = C F ′ (x) = − D F ′ (x) = lnx A F ′ (x) = x x x Câu 28 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D 4 Câu 29 Cho hàm số y = ax + bx + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (0; 1) B (1; 2) C (−1; 2) D (1; 0) Câu 30 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt √phẳng (S CD) √ √ √ 3 a B a C a D 2a A 3 Câu 31 Đồ thị hàm số có dạng đường cong hình bên? x−3 A y = x4 − 3x2 + B y = x2 − 4x + C y = x3 − 3x − D y = x−1 Câu 32 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; 2) B (2; +∞) C (1; +∞) D (−∞; 1) Câu 33 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 210 B 30 C 225 D 105 Câu 34 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x + y − = C x − y + = D x + y − = z+i+1 số ảo? Câu 35 Tìm tập hợp điểm M biểu diễn số phức z cho w = z + z + 2i A Một đường tròn B Một Elip C Một đường thẳng D Một Parabol Câu 36 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 z Câu 37 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác B Tam giác OAB tam giác cân C Tam giác OAB tam giác nhọn D Tam giác OAB tam giác vuông Câu 38 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Parabol B Hai đường thẳng C Đường tròn D Một đường thẳng Câu 39 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 1)2 + (y − 4)2 = 125 B (x − 5)2 + (y − 4)2 = 125 C x = D (x + 1)2 + (y − 2)2 = 125 z − z =2? Câu 40 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một Parabol B Một đường tròn C Một đường thẳng D Một Elip √ Câu 41 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Trang 3/5 Mã đề 001 Câu 42 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn z1 , z2 số phức w = x + iy mặt phẳng phức Để tam giác MNP số phức k √ √ √ √ A w = − 27 − i hoặcw = − 27 + i B w = 27 − i hoặcw = 27 + i √ √ √ √ C w = + 27i hoặcw = − 27i D w = + 27 hoặcw = − 27 Câu 43 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 32π 31π A 6π B C D 5 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 44 Trong không gian với hệ trục tọa độ Oxyz cho → → − → − tơ u + v −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (2; 14; 14) A 2→ B 2→ −u + 3→ −v = (1; 14; 15) C 2→ Câu 45 Biết π R2 −u + 3→ −v = (1; 13; 16) D 2→ sin 2xdx = ea Khi giá trị a là: A B ln C − ln D Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = − 2t x = + 2t x = −1 + 2t x = + 2t y = −2 + 3t y = −2 − 3t y = + 3t y = −2 + 3t A B C D z = + 5t z = − 5t z = −4 − 5t z = − 5t Câu 47 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080251 đồng C 36080253 đồng B 36080254 đồng D 36080255 đồng Câu 48 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 12π B 6π C 10π D 8π Câu 49 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 400π 500π 125π 250π B C D A 9 Câu 50 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ a 15 3a 30 3a 3a A B C D 10 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001