1. Trang chủ
  2. » Tất cả

Đề thi tham khảo môn toán (905)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 118,01 KB

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB Tính[.]

LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vng cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 600 B 1200 C 450 D 300 Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = B yCD = 36 C yCD = −2 Câu Biết R5 A T = 81 dx = ln T Giá trị T là: 2x − B T = C T = D yCD = 52 D T = √ Câu Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A B C = = = D = V2 V2 V2 V2 √ x Câu Tìm nghiệm phương trình x = ( 3) A x = B x = C x = −1 D x = Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln − B ln + C − ln D ln − 2 2 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = −7 C m = D m = x−1 y+2 z = = không qua điểm đây? Câu Đường thẳng (∆) : −1 A A(−1; 2; 0) B (3; −1; −1) C (−1; −3; 1) D (1; −2; 0) Câu 10 Thể tích khối lập phương có cạnh 3a là: A 27a3 B 8a3 C 2a3 D 3a3 Câu 11 Tập nghiệm bất phương trình log3 (10 − x+1 ) ≥ − x chứa số nguyên A Vô số B C D Câu 12 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(1; 2; 3); R = B I(−1; 2; −3); R = C I(1; −2; 3); R = D I(1; 2; −3); R = Câu 13 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 A V = a3 B V = 2a3 C V = 3a3 D V = Trang 1/5 Mã đề 001 − −a = (−1; 1; 0), → −c = (1; 1; 1) Trong Câu 14 Trong không gian Oxyz, cho ba véctơ → b = (1; 1; 0), → mệnh đề sau, mệnh đề sai? √ → √ → − → → − → − − −c = − B b ⊥ a C b ⊥ c D → A a = √ Câu 15 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O √ đến mặt phẳng (S AB) √ A d = a B d = a C d = 2a D d = a Câu 16 Với a số thực dương tùy ý, log5 (5a) A − log5 a B + log5 a C − log5 a D + log5 a Câu 17 Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (1; 2; 3) B (−1; −2; −3) C (2; 4; 6) D (−2; −4; −6) Câu 18 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 0) B (−1; 2) C (1; 2) D (0; 1) Câu 19 Tập nghiệm bất phương trình x+1 < A (1; +∞) B (−∞; 1) C [1; +∞) D (−∞; 1] Câu 20 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: B y′ = lnx3 C y′ = 1x A y′ = − x ln1 D y′ = x ln Câu 21 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu 22 Tập nghiệm bất phương trình log(x − 2) > A (12; +∞) B (2; 3) C (−∞; 3) D (3; +∞) Câu 23 Xét số phức z thỏa mãn z2 − − 4i = 2|z| Gọi M m giá trị lớn giá trị nhỏ |z| Giá trị M + m2√bằng A 14 B 18 + C 28 √ D 11 + = y−1 = z−1 Gọi (P) mặt Câu 24 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 2 −3 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) D 113 A B C 13 R Câu 25 Cho 1x dx = F(x) + C Khẳng định đúng? B F ′ (x) = ln x C F ′ (x) = 1x D F ′ (x) = − x12 A F ′ (x) = x22 Câu 26 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (−∞; 1) B (3; +∞) C (0; 2) D (1; 3) Câu 27 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 28 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; 6) B (−6; 7) C (7; −6) D (6; 7) R4 R4 R4 Câu 29 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B C D −1 Câu 30 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 30 B 210 C 105 D 225 Trang 2/5 Mã đề 001 Câu 31 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: ln3 1 A y′ = B y′ = − C y′ = D y′ = x xln3 x xln3 Câu 32 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A 2πrl B πrl2 C πrl D πr2 l 3 Câu 33 Có giá trị nguyên tham số m để hàm số y = −x + 6x2 + mx có ba điểm cực trị? A 17 B C 15 D Câu 34 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C D 10 √ Câu 35 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 1 3 A |z| < B < |z| < C ≤ |z| ≤ D |z| > 2 2 Câu 36 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A x = B (x − 1)2 + (y − 4)2 = 125 C (x − 5)2 + (y − 4)2 = 125 D (x + 1)2 + (y − 2)2 = 125 Câu 37 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = 10 B max T = C max T = D max T = Câu 38 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A −1 B C D Câu 39 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π D A 5π B 25π C 2 Câu 40 Gọi z1 z2 nghiệm phương trình z − 4z + = Gọi M, N điểm biểu diễn z1 , z2 √ mặt phẳng phức Khi đó√độ dài MN A MN = B MN = C MN = D MN = √ Câu 41 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = B |z| = 10 C |z| = 50 D |z| = 33 Câu 42 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x + y − = C x + y − = D x − y + = Câu 43 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 A 3a B 6a C 9a D 4a3 Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Trang 3/5 Mã đề 001 Câu 45 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n A log2 2250 = 2mn + 2n + m B log2 2250 = 2mn + n + n C log2 2250 = 2mn + n + n D log2 2250 = 3mn + n + n Câu 46 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng C 36080255 đồng B 36080251 đồng D 36080253 đồng Câu 47 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ A √ B C D √ Câu 48 Tính đạo hàm hàm số y = log4 x2 − A y′ = x (x2 − 1)log4 e B y′ = x 2(x2 − 1) ln C y′ = x (x2 − 1) ln D y′ = √ x2 − ln Câu 49 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ 15 A 10 √ B 15 √ C D Câu 50 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 + sin 3x)5 x+cos3x ln Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 05/04/2023, 19:18