LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề nào dưới đây đúng? A Hàm số nghịch bi[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (1; +∞) B Hàm số đồng biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (−3; 1) D Hàm số nghịch biến khoảng (−∞; −3) Câu Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D log Câu √ Cho a > a , Giá trị a A B √ a bằng? C D Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 4m2 − m2 − 12 m2 − m2 − 12 A B C D 2m m 2m 2m y+2 z x−1 = = Viết phương Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − 2y − = B (P) : x − y + 2z = C (P) : x − y − 2z = D (P) : x + y + 2z = Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A Không tồn m B m < C m < D < m < 3 Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = −2 C yCD = D yCD = 52 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 2; 0) B A(0; 2; 3) C A(1; 0; 3) D A(0; 0; 3) Câu Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số ngun dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D x+1 y z−2 = = Viết Câu 10 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : 1 phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : x − 2z + = B (P) : y − z + = C (P) : y + z − = D (P) : x − 2y + = Câu 11 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A −4 B C D 2i √ Câu 12 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O √ đến mặt phẳng (S AB) √ A d = a B d = a C d = a D d = 2a x−1 y+2 z Câu 13 Đường thẳng (∆) : = = không qua điểm đây? −1 A (3; −1; −1) B (−1; −3; 1) C (1; −2; 0) D A(−1; 2; 0) Trang 1/5 Mã đề 001 Câu 14 Biết R3 A f (x)dx = R3 g(x)dx = Khi B −2 R3 [ f (x) + g(x)]dx C D Câu 15 Đường cong hình bên đồ thị hàm số đây? A y = x4 − 2x2 + B y = x3 − 3x2 + C y = −x3 + 3x2 + D y = −x4 + 2x2 + Câu 16 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A [−3; 3] B (−∞; −3] ∪ [3; +∞) C (−∞; 3] D (0; 3] Câu 17 Tập nghiệm bất phương trình log(x − 2) > A (12; +∞) B (−∞; 3) C (2; 3) D (3; +∞) Câu 18 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C −1 D Câu 19 Cho cấp số nhân (un ) với u1 = công bội q = 12 Giá trị u3 A 12 B 72 C D 41 Câu 20 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox A 16 B 16π C 16 D 16π 15 15 Câu 21 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n3 = (1; 1; 1) B → n4 = (1; 1; −1) C → n1 = (−1; 1; 1) D → n2 = (1; −1; 1) Câu 22 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ A 62 a3 B 42 a3 C 2a3 D 22 a3 Câu 23 Cho số phức z = + 9i, phần thực số phức z2 A B −77 C 36 x2 −16 Câu 24 Có số nguyên x thỏa mãn log3 343 < log7 A 186 B 193 C 184 D 85 x2 −16 27 ? D 92 Câu 25 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; −6) B (7; 6) C (−6; 7) D (6; 7) R4 R4 R4 Câu 26 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B C −1 D Câu 27 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 B C D A 35 35 35 Câu 28 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln(6a2 ) B lna C ln D ln Câu 29 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt √phẳng (S CD) √ √ √ 3 A a B a C a D 2a 3 Câu 30 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = B d = R C d > R D d < R Trang 2/5 Mã đề 001 Câu 31 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 210 B 30 C 105 D 225 Câu 32 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (−1; −2; −3) B (1; −2; 3) C (−1; 2; 3) D (1; 2; −3) x−1 y−2 z+3 = = Điểm thuộc Câu 33 Trong không gian Oxyz, cho đường thẳng d : −1 −2 d? A M(2; −1; −2) B P(1; 2; 3) C N(2; 1; 2) D Q(1; 2; −3) Câu 34 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 5)2 + (y − 4)2 = 125 B (x + 1)2 + (y − 2)2 = 125 C x = D (x − 1)2 + (y − 4)2 = 125 √ Câu 35 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 1 A ≤ |z| ≤ B |z| < C |z| > D < |z| < 2 2 √ Câu 36 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = z−z =2? Câu 37 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường thẳng B Một Elip C Một đường tròn D Một Parabol Câu 38 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 2π B π C 3π D 4π Câu 39 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Đường tròn B Hai đường thẳng C Một đường thẳng D Parabol Câu 40 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C D 10 Câu 41 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A √ B √ C D √ 13 z+i+1 số ảo? z + z + 2i C Một đường thẳng D Một đường trịn Câu 42 Tìm tập hợp điểm M biểu diễn số phức z cho w = A Một Elip B Một Parabol Câu 43 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 26abc B P = 2abc C P = 2a+2b+3c D P = 2a+b+c Câu 44 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B C D −2 Câu 45 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−3; 0) B (1; 5) C (3; 5) D (−1; 1) Trang 3/5 Mã đề 001 Câu 46 Biết π R2 sin 2xdx = ea Khi giá trị a là: A B C − ln D ln Câu 47 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = ln a B P = C P = 2loga e D P = + 2(ln a)2 Câu 48 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 49 Chọn mệnh đề mệnh đề sau: A Nếu a < a x > ay ⇔ x < y B Nếu a > a x > ay ⇔ x > y C Nếu a > a x > ay ⇔ x < y D Nếu a > a x = ay ⇔ x = y d Câu 50 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ A a B 2a √ C a D a Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001