LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1 (x + 1)(x + 2)2 ;[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = t(t > 0) Tìm lim S (t) t→+∞ A ln + B − ln 2 C ln − ; y = 0; x = 0; x = (x + 1)(x + 2)2 D − ln − √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường thẳng BB′ AC ′ √ √ √ √ a a a A a B C D R5 dx Câu Biết = ln T Giá trị T là: 2x − √ C T = 81 D T = A T = B T = √ sin 2x Câu Giá trị lớn hàm R bằng? √ số y = ( π) A π B π C D Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 m2 − 12 4m2 − m2 − A B C D 2m m 2m 2m Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x B − C D A 6 √ x x Câu Tìm nghiệm phương trình = ( 3) A x = B x = −1 C x = D x = log Câu Cho a > a , Giá √ trị a A B √ a bằng? C D Câu Tính đạo hàm hàm số y = 2023 x A y′ = 2023 x B y′ = 2023 x ln x C y′ = x.2023 x−1 D y′ = 2023 x ln 2023 x−1 y+2 z Câu 10 Đường thẳng (∆) : = = không qua điểm đây? −1 A (−1; −3; 1) B A(−1; 2; 0) C (3; −1; −1) D (1; −2; 0) Câu 11 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(1; −2; 3); R = B I(−1; 2; −3); R = C I(1; 2; −3); R = D I(1; 2; 3); R = √ Câu 12 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ √ B (x − 4)2 + (y + 8)2 = A (x + 4)2 + (y − 8)2 = C (x + 4)2 + (y − 8)2 = 20 D (x − 4)2 + (y + 8)2 = 20 Câu 13 Cho hàm số có bảng biến thiên: Khẳng định sau đúng? A Hàm số đạt cực đại C Hàm số đạt cực đại B Hàm số đạt cực đại D Hàm số đạt cực đại Trang 1/5 Mã đề 001 Câu 14 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(5; 2) B M(−2; 5) C M(−5; −2) D M(5; −2) Câu 15 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số nguyên dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Câu 16 Tập nghiệm bất phương trình log3 (10 − x+1 ) ≥ − x chứa số nguyên A B Vô số C D Câu 17 Tập nghiệm bất phương trình log(x − 2) > A (3; +∞) B (−∞; 3) C (2; 3) D (12; +∞) = y−1 = Câu 18 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 2 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) A 11 B C D 13 z−1 −3 Gọi (P) mặt Câu 19 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d < R B d = R C d > R D d = Câu 20 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D R Câu 21 Cho x dx = F(x) + C Khẳng định đúng? D F ′ (x) = x22 A F ′ (x) = ln x B F ′ (x) = − x12 C F ′ (x) = 1x Câu 22 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ C 3 a D 22 a B 33 a A 2a Câu 23 Cho hàm số y = ax+b có đồ thị đường cong hình bên Tọa độ giao điểm đồ thị hàm cx+d số cho trục hoành A (−2; 0) B (0; 2) C (0; −2) D (2; 0) Câu 24 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (4; 5) B (3; 4) C (6; 7) D (2; 3) Câu 25 Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−2; −4; −6) B (2; 4; 6) C (1; 2; 3) D (−1; −2; −3) Câu 26 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ 3 B a C a D a A 2a 3 Câu 27 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 3 A a B a C 2a D a Câu 28 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) 1 A B C D 2 Trang 2/5 Mã đề 001 Câu 29 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A 12 B C R2 R2 Câu 30 Nếu f (x) = [ f (x) − 2] A −2 B C D Câu 31 Tập nghiệm bất phương trình log(x − 2) > A (12; +∞) B (−∞; 3) C (3; +∞) D (2; 3) D 11 Câu 32 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D Câu 33 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A B C 15 D 17 z Câu 34 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác B Tam giác OAB tam giác nhọn C Tam giác OAB tam giác vuông D Tam giác OAB tam giác cân Câu 35 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi đó√ độ dài MN √ C MN = D MN = A MN = B MN = Câu 36 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π B 5π C 25π D A 2 Câu 37 Cho số phức z thoả mãn (1 + z) số thực Tập hợp điểm M biểu diễn số phức z A Một đường thẳng B Parabol C Đường tròn D Hai đường thẳng √ Câu 38 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = z−z =2? Câu 39 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường thẳng B Một Elip C Một Parabol D Một đường tròn Câu 40 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 3π B 2π C 4π D π 1+i Câu 41 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = z mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 25 15 15 25 A S = B S = C S = D S = 2 4 Câu 42 Gọi z1 z2 nghiệm phương trình z − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức √ w = x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k A w = √ 27 − i hoặcw = 27√+ i B w = + √27i hoặcw = − √ 27i C w = − 27 − i hoặcw = − 27 + i D w = + 27 hoặcw = − 27 Câu 43 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + 2πR2 B S = πRl + πR2 C S = 2πRl + 2πR2 D S = πRh + πR2 Trang 3/5 Mã đề 001 √ 2x − x2 + Câu 44 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C r Câu 45 Tìm tập xác định D hàm số y = log2 D 3x + x−1 A D = (−∞; −1] ∪ (1; +∞) B D = (1; +∞) C D = (−1; 4) ———————————————– D D = (−∞; 0) Câu 46 Biết a, b ∈ Z cho A R (x + 1)e2x dx = ( B ax + b 2x )e + C Khi giá trị a + b là: C D Câu 47 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n A log2 2250 = 2mn + n + n B log2 2250 = 2mn + 2n + m C log2 2250 = 2mn + n + n D log2 2250 = 3mn + n + n 3x Câu 48 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A Không tồn m B m = C m = −2 D m = Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = + 2t x = −1 + 2t x = − 2t x = + 2t y = −2 − 3t y = + 3t y = −2 + 3t y = −2 + 3t D A B C z = − 5t z = −4 − 5t z = + 5t z = − 5t Câu 50 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( A 32 B 128 C 64 x2 )=8 D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001