LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian Oxyz, cho mặt cầu (S ) x2 + y2 + z2 − 2x − 2y + 4z − 1 = 0 và mặ[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = −7 B m = C m = D m = Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 B − C D A 6 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 4π B 2π C π D 3π Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: A (−∞; 2] B (1; 2] C [2; +∞) D (1; 2) Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A Câu Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B π C −1 D Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D Câu Số phức z = − 3i có phần ảo A −3 B 3i C D Câu 10 Cho hàm số y = f (x) có đồ thị hình vẽ Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt A −4 < m ≤ −3 B m > −4 C −4 ≤ m < −3 D −4 < m < −3 Câu 11 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π , Tính diện tích tam giác ABC lượt hình trịn xoay tích 672π, 13 A S = 1979 B S = 84 C S = 364 D S = 96 Câu 12 Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A B 2i D C −4 Câu 13 Trong số phức z thỏa mãn z − i = z¯ − − 3i Hãy tìm z có mơđun nhỏ 27 27 27 A z = − + i B z = − − i C z = − i D z = + i 5 5 5 5 Câu 14 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A m < −1 B m > C −1 ≤ m < D −1 ≤ m ≤ Trang 1/5 Mã đề 001 −a = (4; −6; 2) Phương Câu 15 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = + 2ty = −3tz = + t B x = −2 + 2ty = −3tz = + t C x = −2 + 4ty = −6tz = + 2t D x = + 2ty = −3tz = −1 + t Câu 16 Với a số thực dương tùy ý, log5 (5a) A − log5 a B − log5 a C + log5 a D + log5 a x−2 Câu 17 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) A 31 B 11 C = y−1 = z−1 −3 Gọi (P) mặt D Câu 18 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (−∞; 1) B (1; 2) C (1; +∞) D (2; +∞) Câu 19 Trong không gian 0xyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−1; −2; −3) B (1; 2; 3) C (2; 4; 6) D (−2; −4; −6) Câu 20 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox B 16 C 16π D 16π A 16 15 15 Câu 21 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (−1; 2) B (0; 1) C (1; 2) D (1; 0) Câu 22 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: B y′ = 1x C y′ = lnx3 A y′ = x ln1 D y′ = − x ln1 Câu 23 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B −1 C D Câu R24 Cho hàm số f (x) = cos x + x Khẳng định nàoR đúng? A f (x)dx = sin x + x2 + C B f (x)dx = sin x + x2 + C R R C f (x)dx = − sin x + x2 + C D f (x)dx = − sin x + x2 + C Câu 25 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; −6) B (6; 7) C (7; 6) D (−6; 7) Câu 26 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) 1 A B C D Câu 27 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 90◦ B 60◦ C 30◦ D 45◦ Câu 28 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 A B C D 2 ′ ′ ′ Câu 29 Cho khối lăng trụ đứng ABC · A B C √có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 3 A a B 2a C a D a Trang 2/5 Mã đề 001 Câu 30 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 31 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A 15 B 17 C D 2x + Câu 32 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 1 2 B y = − C y = D y = − A y = 3 3 800π Câu 33 Cho khối nón có đỉnh S , chiều cao thể tích Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 B C D A 24 z Câu 34 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác cân B Tam giác OAB tam giác C Tam giác OAB tam giác vuông D Tam giác OAB tam giác nhọn Câu 35 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ B max T = 10 C max T = D max T = A max T = Câu 36 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi độ dài MN √ √ A MN = B MN = C MN = D MN = Câu 37 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A 10 B C D Câu 38 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π C 25π D A 5π B Câu 39 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 1)2 + (y − 4)2 = 125 B (x − 5)2 + (y − 4)2 = 125 C (x + 1)2 + (y − 2)2 = 125 D x = Câu 40 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Parabol B Một đường thẳng C Đường tròn D Hai đường thẳng Câu 41 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x + y − = C x + y − = D x − y + = Câu 42 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 25 15 15 A S = B S = C S = 4 D S = 1+i z 25 Trang 3/5 Mã đề 001 Câu 43 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: A 12 B C D Câu 44 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (−3; 0) √ Câu 45 Cho bất phương trình 2(x−1)+1 C (1; 5) D (−1; 1) − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ [ 1; 3] B Bất phương trình vơ nghiệm C Bất phương trình có nghiệm thuộc khoảng (−∞; 1) D Bất phương trình với x ∈ (4; +∞) Câu 46 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −4 C D −2 Câu 47 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ B 3a3 C 6a3 D 4a3 A 9a3 Câu 48 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 + sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 49 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = A 23 B 29 C 25 D 27 Câu 50 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 12a3 B 3a3 C 4a3 D 6a3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001