LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính nguyên hàm ∫ cos 3xdx A 3 sin 3x +C B −3 sin 3x +C C − 1 3 sin 3x +C D 1 3 s[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính nguyên hàm R cos 3xdx 1 C − sin 3x + C D sin 3x + C 3 √ ′ ′ ′ ′ Câu Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = a Tính khoảng cách hai đường thẳng BB′ AC ′ √ √ √ √ a a a A a B C D 2 Câu Đường cong hình bên đồ thị hàm số nào? A y = x4 + 2x2 + B y = x4 + C y = −x4 + D y = −x4 + 2x2 + A sin 3x + C B −3 sin 3x + C Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A π B 3π C 2π D 4π Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tiếp tam giác BCD và√có chiều cao chiều√cao tứ diện √ √ π 3.a2 π 2.a2 2π 2.a2 B C D A π 3.a 3 Câu Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab2 ) = ln a + (ln b)2 B ln(ab) = ln a ln b a ln a C ln( ) = D ln(ab2 ) = ln a + ln b b ln b Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 A V = 2a3 B V = C V = a3 D V = 3a3 Câu 10 Cho lăng trụ đứng ABC.A′ B′C ′ có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng 600 Biết diện√tích tam giác ∆A′ BC 2a2 Tính thể tích V khối lăng trụ ABC.A′ B′C ′ √ a3 2a3 A V = B V = C V = 3a3 D V = a3 3 Câu 11 Cho hàm số y = f (x) có đạo hàm f ′ (x) = x2 − 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến khoảng A (−2; 0) B (2; +∞) C (−∞; −2) D (0; 2) Câu 12 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số nguyên dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Trang 1/5 Mã đề 001 Câu 13 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (−∞; 1) B (−1; 0) C (1; +∞) D (0; 1) π R4 Câu 14 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 + 16π − A 16 π2 + 16π − 16 B 16 π2 + 15π C 16 B 10 32 C π2 − D 16 R3 Câu 15 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị [1 + f (x)]dx 26 A D √ Câu 16 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: A (x − 4)2 + (y + 8)2 = 20 B (x + 4)2 + (y − 8)2 = 20 √ √ C (x + 4)2 + (y − 8)2 = D (x − 4)2 + (y + 8)2 = R4 R4 R4 Câu 17 Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A B C −1 D Câu 18 Tiệm cận ngang đồ thị hàm số y = A y = 31 B y = 23 2x+1 3x−1 đường thẳng có phương trình: C y = − 32 D y = − 13 Câu 19 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln 6a2 B ln 23 C ln 32 D ln a Câu 20 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Câu 21 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A B C 11 D 12 Câu 22 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; 2; −3) B (1; −2; 3) C (−1; 2; 3) D (−1; −2; −3) Câu 23 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: C y′ = πxπ A y′ = πxπ−1 B y′ = π1 xπ−1 D y′ = xπ−1 Câu 24 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 0) B (0; 1) C (−1; 2) D (1; 2) Câu 25 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 105 B 210 C 225 D 30 Câu 26 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 2) B (−1; 2) C (0; 1) D (1; 0) Câu 27 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: ln3 A y′ = B y′ = C y′ = xln3 x x D y′ = − xln3 Trang 2/5 Mã đề 001 Câu 28 Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B C 12 D Câu 29 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n2 = (1; −1; 1) B → n4 = (1; 1; −1) C → n1 = (−1; 1; 1) D → n3 = (1; 1; 1) Câu 30 Phần ảo số phức z = − 3i A −3 B C D −2 Câu 31 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ 3 a B 2a C a D a A 3 Câu 32 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 30 B 105 C 210 D 225 Câu 33 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D Câu 34 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B −1 C D Câu 35 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ C P = D P = A P = B P = 2 Câu 36 Gọi z1 z2 nghiệm phương trình z − 2z + 10 = Gọi M, N, P điểm biểu diễn √ Để tam giác MNP √ số phức k √ z1 , z2 số phức w√ = x + iy mặt phẳng phức − i hoặcw = − 27 + i B w = 27 − i hoặcw = 27 √ + i A w = − 27 √ √ √ C w = + 27i hoặcw = − 27i D w = + 27 hoặcw = − 27 Câu 37 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π A 5π B 25π C D √ Câu 38 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 A |z| > B < |z| < C ≤ |z| ≤ D |z| < 2 2 ′ Câu 39 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A √ B √ C D √ 13 Câu 40 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Parabol B Đường tròn C Hai đường thẳng D Một đường thẳng z+i+1 Câu 41 Tìm tập hợp điểm M biểu diễn số phức z cho w = số ảo? z + z + 2i A Một Parabol B Một đường tròn C Một đường thẳng D Một Elip Trang 3/5 Mã đề 001 Câu 42 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = C r = 22 D r = 20 Câu 43 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ C R = D R = 14 A R = B R = 15 Câu 44 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+b+c B P = 2abc C P = 26abc D P = 2a+2b+3c √ 2x − x2 + Câu 45 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 46 Chọn mệnh đề mệnh đề sau: A Nếu a > a x = ay ⇔ x = y B Nếu a > a x > ay ⇔ x > y C Nếu a < a x > ay ⇔ x < y D Nếu a > a x > ay ⇔ x < y Câu 47 Tìm tất giá trị tham số m để hàm số y = A m = B m = −1 x2 + mx + đạt cực tiểu điểm x = x+1 C m = D Không có m Câu 48 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D Câu 49 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 + sin 3x)5 x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 50 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −4 ≤ m ≤ −1 B m < C −3 ≤ m ≤ D m > −2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001