1. Trang chủ
  2. » Tất cả

Đề thi tham khảo môn toán (798)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 119,54 KB

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1 (x + 1)(x + 2)2 ;[.]

LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B ln − C ln + D − ln − A − ln 2 2 Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; −1; 2) B I(1; 1; 2) C I(0; 1; −2) D I(0; 1; 2) Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tiếp tam giác BCD và√có chiều cao chiều√cao tứ diện √ √ π 3.a2 π 2.a2 2π 2.a2 A π 3.a B C D 3 Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 A (m ) B (m ) C (m2 ) D 3(m2 ) R Câu Tính nguyên hàm cos 3xdx 1 A sin 3x + C B −3 sin 3x + C C − sin 3x + C D sin 3x + C 3 Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 B − C D A 6 Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = B f (−1) = −3 C f (−1) = −1 D f (−1) = −5 Câu Biết R5 A T = dx = ln T Giá trị T là: 2x − B T = 81 C T = √ D T = Câu Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị R3 [1 + f (x)]dx A 26 B 10 C 32 D Câu 10 Cho hàm số y = f (x) có đạo hàm f ′ (x) = x2 − 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến khoảng A (−2; 0) B (−∞; −2) C (2; +∞) D (0; 2) Câu 11 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 4) −n = (−2; 3; 1) −n = (2; 3; −4) −n = (2; −3; 4) A → B → C → D → Câu 12 Tìm đạo hàm hàm số: y = (x + 1) 1 3 A (x + 1) B 3x(x2 + 1) C (2x) 2 − D x Trang 1/5 Mã đề 001 Câu 13 Với a số thực dương tùy ý, log5 (5a) A − log5 a B + log5 a C − log5 a D + log5 a Câu 14 Đường cong hình bên đồ thị hàm số đây? A y = −x4 + 2x2 + B y = x3 − 3x2 + C y = −x3 + 3x2 + D y = x4 − 2x2 + Câu 15 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (−∞; 1) B (0; 1) C (1; +∞) D (−1; 0) √ 2, OD = Câu 16 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O √ đến mặt phẳng (S AB) √ A d = a B d = a C d = a D d = 2a Câu 17 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn |z + 2i| = đường tròn Tâm đường trịn có tọa độ A (0; −2) B (2; 0) C (−2; 0) D (0; 2) Câu 18 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 2) B (1; 0) C (0; 1) D (−1; 2) Câu 19 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx C 23 D A B 34 Câu 20 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln 23 B ln a C ln 32   D ln 6a2 Câu 21 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A −1 B C D Câu 22 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 23 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) 36 a, thể tích khối lăng trụ cho √ √ √ √ A 62 a3 B 22 a3 C 2a3 D 42 a3 Câu 24 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu 25 Có cặp số nguyên (x; y) thỏa mãn       log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ? A 48 Câu 26 Nếu A R2 B 90 C 89 R2 f (x) = [ f (x) − 2] B C D 49 D −2 Câu 27 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 A f (x) = −sinx + + C B f (x) = sinx + x2 + C R R x2 C f (x) = −sinx + x2 + C D f (x) = sinx + + C Trang 2/5 Mã đề 001 Câu 28 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 0) B (0; 1) C (1; 2) D (−1; 2) Câu 29 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A −2 B −3 C D Câu 30 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (−1; −2; −3) B (1; −2; 3) C (−1; 2; 3) D (1; 2; −3) Câu 31 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết a, thể tích khối lăng trụ cho khoảng cách từ A đến mặt phẳng (A′ BC) √ √ √ √ 3 3 A 2a a C a D a B Câu 32 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 225 B 210 C 30 D 105 Câu 33 Phần ảo số phức z = − 3i A B −3 C D −2 Câu 34 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 Câu 35 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ tam giác MNP √ số phức k √ z1 , z2 số phức w√ = x + iy mặt phẳng phức Để B w = + √27 hoặcw = − √27 A w = −√ 27 − i hoặcw =√− 27 + i D w = + 27i hoặcw = − 27i C w = 27 − i hoặcw = 27 + i √ Câu 36 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 37 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 22 C r = D r = 20 √ Câu 38 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 33 B |z| = 50 C |z| = 10 D |z| = Câu 39 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A π B 3π C 4π D 2π −2 − 3i Câu 40 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 41 Tìm tập hợp điểm M biểu diễn số phức z cho w = A Một đường thẳng B Một đường tròn C Một Elip z+i+1 số ảo? z + z + 2i D Một Parabol Câu 42 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi đó√độ dài MN √ A MN = B MN = C MN = D MN = Trang 3/5 Mã đề 001 Câu 43 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng C 36080251 đồng B 36080253 đồng D 36080255 đồng Câu 44 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 32π B 33π C 6π D 31π Câu 45 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = A 25 B 27 C 23 D 29 Câu 46 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 B y = −2x4 + 4x2 C y = −x4 + 2x2 + D y = x3 − 3x2 Câu 47 Chọn mệnh đề mệnh đề sau: A R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B R3 |x2 − 2x|dx = − C R3 R3 R2 (x2 − 2x)dx + R2 R3 (x2 − 2x)dx |x − 2x|dx = |x − 2x|dx − D 2 R3 |x2 − 2x|dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx 1 d Câu 48 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B a C 2a D a 3x Câu 49 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = −2 C m = D Không tồn m Câu 50 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2abc B P = 26abc C P = 2a+b+c D P = 2a+2b+3c Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 05/04/2023, 19:03

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN