Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P) 2x− y+ 2z+ 5 =[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001001 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (2; −1; −2) C (2; −1; 2) D (−2; 1; 2) √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành? 10π π A V = B V = C V = π D V = 3 Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 30a3 B 100a3 C 20a3 D 60a3 −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa√độ Oxyz cho → −u | = −u | = −u | = −u | = C |→ D |→ A |→ B |→ Câu √Hình nón có bán kính đáy R, đường sinh l diện √ tích xung quanh 2 A 2π l − R B 2πRl C π l2 − R2 D πRl π π x π F( ) = ) Câu Biết F(x) nguyên hàm hàm số f (x) = Tìm F( √ cos2 x π π ln π π ln π π ln π π ln A F( ) = + B F( ) = − C F( ) = − D F( ) = + 4 4 4 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < y < −3 B Nếux > thìy < −15 C Nếux = y = −3 D Nếu < x < π y > − 4π2 Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > 2e B m > C m ≥ e−2 D m > e2 Câu Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, diện √ tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 27 B 18 C 12 D 21 Câu 10 Cho khối lăng trụ đứng ABC.A′ B′C ′ √ có đáy ABC tam giác vuông cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 A B C D 6 z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 11 Cho số phức zthỏa mãn i + tròn (C) Tính bán kính rcủa đường √ trịn (C) √ A r = B r = C r = D r = Câu 12 Tổng tất nghiệm phương trình log2 (6 − x ) = − x A B C D Trang 1/5 Mã đề 001001 Câu 13 Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A 192 B 384 C −192 D −384 ax + b Câu 14 Cho hàm số y = có đồ thị đường cong hình vẽ bên Tọa độ giao điểm đồ thị cx + d hàm số cho trục hoành A (0 ; −2) B (0 ; 3) C (2 ; 0) D (3; ) Câu 15 Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho a3 2a3 C D 2a3 A 6a3 B 3 x−2 y−6 z+2 Câu 16 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : = = −2 x−4 y+1 z+2 = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng d2 : −2 cách từ điểm M(1; 1; 1) đến (P) √ A √ B √ C √ D 10 10 53 2017 + 2i + i có tổng phần thực phần ảo Câu 17 Số phức z = 2−i A B C -1 D Câu 18 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2k B A = C A = 2ki D A = Câu 19 Với số phức z, ta có |z + 1|2 A |z|2 + 2|z| + B z · z + z + z + C z2 + 2z + Câu 20 Cho số phức z = + 5i Tìm số phức w = iz + z A w = − 3i B w = −7 − 7i C w = + 7i D z + z + D w = −3 − 3i Câu 21 Cho số phức z thỏa mãn √ z(1 + 3i) = 17 + i Khi mô-đun số phức√w = 6z − 25i A B C 13 D 29 2(1 + 2i) Câu 22 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C D 13 Câu 23 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −3 B −7 C D Câu 24 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D 4(−3 + i) (3 − i) Câu 25 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ − 2i √ A |w| = B |w| = 48 C |w| = 85 D |w| = Câu 26 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 A B C D 2 ax + b Câu 27 Cho hàm số y = có đồ thị đường cong hình bên cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (2; 0) B (0; −2) C (0; 2) D (−2; 0) Trang 2/5 Mã đề 001001 Câu 28 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; +∞) B (2; +∞) C (−∞; 1) D (1; 2) Câu 29 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 30◦ B 90◦ C 60◦ D 45◦ Câu 30 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 31 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (0; 1) B (1; 0) C (1; 2) D (−1; 2) Câu 32 Tập nghiệm bất phương trình log(x − 2) > A (−∞; 3) B (2; 3) C (3; +∞) D (12; +∞) Câu 33 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (4; 5) B (6; 7) C (2; 3) D (3; 4) Câu 34 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | √ i Giá trị (a + bz + cz2 )(a + bz2 + cz) Câu 35 Cho a, b, c số thực z = − + 2 A a2 + b2 + c2 − ab − bc − ca B a + b + c 2 C a + b + c + ab + bc + ca D Câu 36 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 z Câu 37 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| bằng? thức + |z|2 √ 1 A B C D Câu 38 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số ảo B Phần thực z số âm C z số thực không dương D |z| = Câu 39 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 √ 2 Câu 40 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Trang 3/5 Mã đề 001001 Câu 41 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = 2016 B P = C P = −2016 D P = Câu 42 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B 18 C D Câu 43 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + 2πR2 B S = 2πRl + 2πR2 C S = πRh + πR2 D S = πRl + πR2 Câu 44 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = B P = + 2(ln a)2 C P = ln a √ Câu 45 Tính đạo hàm hàm số y = log4 x2 − x x A y′ = B y′ = C y′ = √ 2(x − 1) ln (x − 1) ln x2 − ln D P = 2loga e D y′ = (x2 x − 1)log4 e Câu 46 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 500π 250π 125π 400π B C D A 9 Câu 47 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R B m > −2 A −3 ≤ m ≤ C m < D −4 ≤ m ≤ −1 Câu 48 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = |x − 2x|dx − |x2 − 2x|dx B R3 |x2 − 2x|dx = − C D R2 (x2 − 2x)dx + R3 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx R2 R3 R3 (x2 − 2x)dx (x2 − 2x)dx √ 2x − x2 + có số đường tiệm cận đứng là: Câu 49 Đồ thị hàm số y = x2 − A B C D Câu 50 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 31π 33π A B C 6π D 5 Trang 4/5 Mã đề 001001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001001