Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình lập phương ABCD A′B′C′D′ Tính góc giữa hai đường thẳng AC và BC[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 600 B 360 C 300 D 450 −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → → − → − −u | = −u | = √3 A | u | = B | u | = C |→ D |→ p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếux = y = −3 C Nếu < x < y < −3 D Nếux > thìy < −15 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; 1; 0) C (0; −5; 0) D (0; 0; 5) Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m < B m ≥ C m > D m ≤ Câu R6 Công thức sai? A R a x = a x ln a + C C e x = e x + C R B R cos x = sin x + C D sin x = − cos x + C ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu Cho hàm số y = cx + d A ad > B ab < C ac < D bc > Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = x2 − 2x + C y = −x4 + 3x2 − D y = x3 − 2x2 + 3x + Câu Tính đạo hàm hàm số y = x 5x B y′ = x ln C y′ = ln 1 Câu 10 Cho hàm số f (x) = − x3 + (2m + 3)x2 − (m2 + 3m)x + tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B C D y′ = x.5 x−1 A y′ = x Có giá trị nguyên Câu 11 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A 2a3 B 6a3 C 6a2 D 16 D a3 Câu 12 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 48 B 56 C 76 D 64 Câu 13 Cho hàm số y = f (x) hàm số bậc có đồ thị hình vẽ Giá trị cực tiểu hàm số cho A −2 B −1 C D Câu 14 Cho cấp số nhân (un ) với u1 = công bội q = −2 Số hạng thứ cấp số nhân A −384 B 192 C −192 D 384 Trang 1/5 Mã đề 001 Câu 15 Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho a3 2a3 C 2a3 D A 6a3 B 3 Câu 16 Cho khối lăng trụ đứng ABC.A′ B′C ′ √ có đáy ABC tam giác vuông cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 A B C D 6 Câu 17 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 18 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = C A = 2k D A = 2ki Câu 19 Với số phức z, ta có |z + 1|2 B z2 + 2z + A z + z + Câu 20 Cho số phức z thỏa mãn (2 + i)z + A Câu 21 Số phức z = A B C |z|2 + 2|z| + D z · z + z + z + 2(1 + 2i) = + 8i Mô-đun số phức w = z + i + 1+i C D 13 (1 + i)2017 có phần thực phần ảo đơn vị? 21008 i B C D 21008 Câu 22 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −7 − 7i B w = −3 − 3i C w = + 7i D w = − 3i Câu 23 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A B −9 C 10 D −10 − 2i (1 − i)(2 + i) + Câu 24 Phần thực số phức z = 2−i + 3i 29 11 11 29 A B C − D − 13 13 13 13 !2016 !2018 1+i 1−i Câu 25 Số phức z = + 1−i 1+i A B C + i D −2 Câu 26 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 0) B (1; 2) C (0; 1) D (−1; 2) ax + b có đồ thị đường cong hình bên cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (−2; 0) B (2; 0) C (0; 2) R Câu 28 Cho dx = F(x) + C Khẳng định đúng? x A F ′ (x) = B F ′ (x) = C F ′ (x) = lnx x x Câu 27 Cho hàm số y = D (0; −2) D F ′ (x) = − x2 Trang 2/5 Mã đề 001 Câu 29 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x = + 2t x = + 2t x=5+t x = + 2t y = + 3t y = −1 + 3t y = + 2t y = −1 + t A B C D z = −1 + t z = −1 + t z = + 3t z = −1 + 3t Câu 30 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 45◦ B 60◦ C 30◦ D 90◦ Câu 31 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 B C D A Câu 32 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 A f (x) = −sinx + + C B f (x) = −sinx + x2 + C R R x2 C f (x) = sinx + + C D f (x) = sinx + x2 + C R2 R2 Câu 33 Nếu f (x) = [ f (x) − 2] A −2 B C D Câu 34 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = 2016 B P = C P = −2016 D max T = √ √ √ 42 √ Câu 35 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2z − i Câu 36 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| ≥ B |A| > C |A| < D |A| ≤ Câu 37 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = C P = 2016 D P = −2016 Câu 38 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = −1 C A = D A = + i Câu 39 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B 13 C D Câu 40 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 10 B C D 15 Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = |z|2 − C P = (|z| − 4)2 D P = (|z| − 2)2 Câu 42 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm Q B điểm S bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm R D điểm P Trang 3/5 Mã đề 001 Câu 43 Chọn mệnh đề mệnh đề sau: A R3 |x − 2x|dx = − B R3 R3 R3 R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx D (x − 2x)dx + 1 C R2 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx 1 Câu 44 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: A Câu 45 Biết B π R2 12 C D C ln D − ln sin 2xdx = ea Khi giá trị a là: A B Câu 46 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A −4 B −2 C D Câu 47 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 11 17 A M( ; ; ) 3 10 31 B M( ; ; ) 3 10 16 C M( ; ; ) 3 21 D M( ; ; ) 3 Câu 48 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 6π B 10π C 12π D 8π Câu 49 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+b+c B P = 2a+2b+3c C P = 2abc D P = 26abc Câu 50 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A −3 B C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001