Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng? A y = x3 B y[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = −x4 + 3x2 − C y = x2 − 2x + D y = x3 − 2x2 + 3x + Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu C πR3 A πR3 B πR3 D 4πR3 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 5a a 3a 2a A C B √ D √ 5 Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m ≥ e−2 B m > C m > e2 D m > 2e Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = + 2x x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? D ∀m ∈ R A −4 < m < B < m , C m < √ Câu 6.√Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA′ = 3a Thể tích khối√lăng trụ cho là: A 3a3 B 3a3 C a3 D 3a3 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường parabol B Đường hypebol C Đường elip D Đường tròn Câu R8 Công thức sai? A R a x = a x ln a + C C cos x = sin x + C R B R e x = e x + C D sin x = − cos x + C Câu Điểm M hình vẽ bên biểu thị cho số phức Khi số phức w = 4z A w = + 12i B w = −8 − 12i C w = −8 − 12i D w = −8 + 12i Câu 10 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B C D Câu 11 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; −2; −1) −n = (1; 3; −2) −n = (1; 2; 3) −n = (1; −2; 3) A → B → C → D → Câu 12 Cho hàm số f (x) liên tục R R2 ( f (x) + 2x) = Tính A B −1 R2 f (x) C −9 D Câu 13 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A H(−2; −1; 3) B J(−3; 2; 7) C K(3; 0; 15) D I(−1; −2; 3) Trang 1/5 Mã đề 001 Câu 14 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 22π 7π 512π B V = C V = D V = A V = 15 Câu 15 Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 60 B 30 C 50 D 40 Câu 16 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 55 14 220 Câu 17 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 18 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B M(2; −3) C N(2; 3) D P(−2; 3) Câu 19 Những số sau vừa số thực vừa số ảo? A Chỉ có số B C.Truehỉ có số C Khơng có số D Câu 20 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = C A = 2k D A = 2ki Câu 21 Tính mơ-đun số phức √ z thỏa mãn z(2 − i) + 13i =√1 √ 34 34 A |z| = 34 B |z| = C |z| = D |z| = 34 3 Câu 22 Cho số phức z thỏa mãn √ = 6z − 25i √ z(1 + 3i) = 17 + i Khi mơ-đun số phức w A B 29 C 13 D Câu 23 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D 25 1 Câu 24 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −31 B 31 C 17 D −17 Câu 25 Với số phức z, ta có |z + 1|2 A z + z + B z · z + z + z + C |z|2 + 2|z| + Câu 26 Đồ thị hàm số sau có điểm cực trị: A y = x4 − 2x2 − B y = −x4 − 2x2 − C y = 2x4 + 4x2 + D z2 + 2z + D y = x4 + 2x2 − Câu 27 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 A 2x3 − 4x4 B x3 − x4 + 2x C x3 + − 4x D x3 + − 4x + 4 x −2x +3x+1 Câu 28 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) Trang 2/5 Mã đề 001 B Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) C Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) D Hàm số đồng biến khoảng (−∞; 1) (3; +∞) Câu 29 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; Độ dài đường cao AH tứ diện ABCD là: A B C D Câu 30 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (−2; 2; 6) B (−2; 3; 5) C (1; −2; 7) D (4; −6; 8) Câu 31 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường tròn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình vng √ √ 3a 10 C 3a D A 6a B 3a Câu 32 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình √ A (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 B (x + 1)2 + (y − 1)2 + (z − 2)2 = C (x − 1)2 + (y + 1)2 + (z + 2)2 = D (x + 1)2 + (y − 1)2 + (z − 2)2 = Câu 33 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 2,075 B 33,2 C 8,9 D 11 Câu 34 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i B |w|min = C |w|min = D |w|min = A |w|min = 2 Câu 35 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số ảo B Phần thực z số âm C |z| = D z số thực không dương Câu 36 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B C D √ 2 Câu 37 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = √ Câu 38 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A < |z| < B ≤ |z| ≤ C |z| > D |z| < 2 2 + z + z2 Câu 39 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 5 3 A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 2 Câu 40 Gọi z1 ; z2 hai nghiệm phương trình z − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 21008 B −22016 C 22016 D −21008 Trang 3/5 Mã đề 001 Câu 41 Cho số phức z , cho z số thực w = |z| bằng? + |z|2 √ A z số thực Tính giá trị biểu + z2 thức B D C Câu 42 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D x2 Câu 43 Tính tích tất nghiệm phương trình (log2 (4x)) + log2 ( ) = 8 1 1 A B C D 64 32 128 r 3x + Câu 44 Tìm tập xác định D hàm số y = log2 x−1 A D = (1; +∞) B D = (−1; 4) C D = (−∞; 0) D D = (−∞; −1] ∪ (1; +∞) Câu 45 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (−1; 1) C (−3; 0) D (1; 5) d Câu 46 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B a C a D 2a Câu 47 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 48 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B −2x − y + 4z − = C 2x + y − 4z + = D 2x + y − 4z + = Câu 50 Chọn mệnh đề mệnh đề sau: R3 R3 R2 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B C D R3 R3 R3 1 R2 |x2 − 2x|dx = (x2 − 2x)dx − |x2 − 2x|dx = − R3 (x2 − 2x)dx R2 (x2 − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − R3 |x2 − 2x|dx Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001