Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính diện tích S của hình phẳng được giới hạn bởi các đường y = x2, y =[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính diện tích S hình phẳng giới hạn đường y = x , y = −x 1 A S = B S = C S = D S = 6 ax + b Câu Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ac < B bc > C ab < D ad > Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = 13 B m = −15 C m = D m = −2 Câu Cho < a , 1; < x , Đẳng thức sau sai? B loga (x − 2)2 = 2loga (x − 2) A loga2 x = loga x D aloga x = x C loga x2 = 2loga x Câu Cho hình√chóp S ABCcó cạnh đáy a cạnh bên√bằng b Thể tích khối chóp là: 3ab2 a2 3b2 − a2 A VS ABC = B VS ABC = 12 12 q √ √ a2 b2 − 3a2 3a b C VS ABC = D VS ABC = 12 12 √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành? π 10π C V = π D V = A V = B V = 3 + 2x Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A −4 < m < B < m , C ∀m ∈ R D m < ′ ′ ′ Câu Cho lăng trụ ABC.A B C có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 5a a 2a 3a B √ C √ D A 5 Câu Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho đồng biến khoảng (1; 4) B Hàm số cho nghịch biến khoảng (1; 4) C Hàm số cho đồng biến khoảng (−∞; 3) D Hàm số cho nghịch biến khoảng (3; +∞) Câu 10 Nếu R6 A f (x) = R6 g(x) = −4 B −6 R6 ( f (x) + g(x)) C D −2 Câu 11 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) Trang 1/5 Mã đề 001 cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A H(−2; −1; 3) B K(3; 0; 15) C J(−3; 2; 7) D I(−1; −2; 3) z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 12 Cho số phức zthỏa mãn i + trịn (C) Tính bán kính rcủa đường √ tròn (C) √ A r = B r = C r = D r = Câu 13 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 48 B 76 C 56 D 64 Câu 14 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B C D Câu 15 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 20 B 18 C 13 D 17 Câu 16 Tập nghiệm bất phương trình 52x+3 > −1 A (−∞; −3) B (−3; +∞) C ∅ D R Câu 17 Với số phức z, ta có |z + 1|2 A |z|2 + 2|z| + B z · z + z + z + D z2 + 2z + C z + z + Câu 18 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là−3 phần ảo −2i B Phần thực −3 phần ảo là−2 C Phần thực là3 phần ảo D Phần thực phần ảo 2i Câu 19 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A P(−2; 3) B Q(−2; −3) C N(2; 3) D M(2; −3) Câu 20 Tìm số phức liên hợp số phức z = i(3i + 1) A z = + i B z = −3 + i C z = − i D z = −3 − i Câu 21 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B −3 C D −7 Câu 22 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −3 − 3i B w = − 3i C w = −7 − 7i D w = + 7i Câu 23 Cho hai √ số phức z1 = + i z2√= − 3i Tính mơ-đun số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = 13 C |z1 + z2 | = D |z1 + z2 | = Câu 24 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = + i C P = D P = 2i Câu 25 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực không âm C Mô-đun số phức z số thực dương B Mô-đun số phức z số phức D Mô-đun số phức z số thực Câu 26 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (−1; 2) B (1; 2) C (1; 0) D (0; 1) Câu 27 Cho hình chóp S ABC có đáy tam giác vuông B, S A vuông góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 45◦ B 60◦ C 30◦ D 90◦ Trang 2/5 Mã đề 001 Câu 28 Cho khối chóp S ABC có đáy tam giác vuông cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B 12 C D Câu 29 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−2; −4; −6) B (2; 4; 6) C (−1; −2; −3) D (1; 2; 3) Câu 30 Tập nghiệm bất phương trình log(x − 2) > A (−∞; 3) B (12; +∞) C (2; 3) D (3; +∞) Câu 31 Cho khối lập phương có cạnh Thể tích khối lập phương cho A B C D Câu 32 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (−6; 7) B (7; 6) C (6; 7) D (7; −6) Câu 33 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 49 B 48 C 89 D 90 Câu 34 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B 13 C D Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ D B C A √ 2 √ Câu 36 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A < |z| < B |z| > C ≤ |z| ≤ D |z| < 2 2 Câu 37 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? A < |z| < B < |z| < 2 + z + z2 số thực − z + z2 < |z| < D < |z| < 2 2 √ Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P B điểm M C bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm N D điểm Q √ 2 Câu 39 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √2 B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 Trang 3/5 Mã đề 001 Câu 40 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 4)2 B P = |z|2 − C P = (|z| − 2)2 D P = |z|2 − Câu 42 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| √ A P = 2016 B P = −2016 C max T = D P = Câu 43 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (2; −3; 4) −n = (2; 3; −4) −n = (−2; 3; 1) −n = (−2; 3; 4) A → B → C → D → Câu 44 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(1; −2; 3); R = B I(1; 2; −3); R = C I(−1; 2; −3); R = D I(1; 2; 3); R = Câu 45 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+1 y z−2 = = Viết 1 phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : y − z + = B (P) : x − 2y + = C (P) : y + z − = D (P) : x − 2z + = Câu 46 Biết F(x) = x nguyên hàm hàm số f (x) R Giá trị R3 [1 + f (x)]dx A 32 B 26 C D 10 C 2a3 D 3a3 Câu 47 Thể tích khối lập phương có cạnh 3a là: A 27a3 B 8a3 Câu 48 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n A −16 B −1 16 C D Câu 49 Đồ thị hàm số y = x3 − 3x2 − 2x cắt trục hoành điểm? A B C D Câu 50 Với a số thực dương tùy ý, log5 (5a) A − log5 a B + log5 a C − log5 a D + log5 a Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001