Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để đường thẳng y = x + m cắt đồ thị[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 + 2x Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A −4 < m < B < m , C m < D ∀m ∈ R Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 30a3 B 100a3 C 60a3 D 20a3 x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = −1 B y = C y = D y = − R R R R 2 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường trịn B Đường hypebol C Đường elip D Đường parabol Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > e2 B m > C m ≥ e−2 D m > 2e Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ≥ B m ∈ (0; 2) C m ∈ (−1; 2) D −1 < m < Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (2; −1; −2) C (−2; 1; 2) D (−2; −1; 2) Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(6; −17; 21) B C(20; 15; 7) C C(6; 21; 21) D C(8; ; 19) Câu Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a A a B C 2a D 2 Câu 10 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A B −7 C −1 D Câu 11 Tập nghiệm bất phương trình 52x+3 > −1 A ∅ B (−∞; −3) C R D (−3; +∞) Câu 12 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho nghịch biến khoảng (1; 4) B Hàm số cho đồng biến khoảng (−∞; 3) C Hàm số cho nghịch biến khoảng (3; +∞) D Hàm số cho đồng biến khoảng (1; 4) Trang 1/5 Mã đề 001 Câu 13 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −2 B −8 C −6 D −4 x−2 y−6 z+2 Câu 14 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : = = −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ C √ A √ B 10 D √ 10 53 Câu 15 Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A 5x5 − sin x + C B 5x5 + sin x + C C x5 − sin x + C D x5 + sin x + C Câu 16 Điểm M hình vẽ bên biểu thị cho số phức Khi số phức w = 4z A w = −8 − 12i B w = −8 + 12i C w = + 12i D w = −8 − 12i z Câu 17 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ C D A 13 B 11 Câu 18 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = + i B P = 2i C P = D P = Câu 19 2i, z2 = − i Giá trị biểu √ Cho số phức z1 = + √ √ thức |z1 + z1 z2 | √ A 30 B 10 C 10 D 130 Câu 20 Với số phức z, ta có |z + 1|2 A z · z + z + z + B |z|2 + 2|z| + C z + z + D z2 + 2z + Câu 21 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là−3 phần ảo −2i B Phần thực −3 phần ảo là−2 C Phần thực phần ảo 2i D Phần thực là3 phần ảo Câu 22 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D 1 25 = + Khi phần ảo z bao nhiêu? Câu 23 Cho số phức z thỏa z + i (2 − i)2 A −31 B 17 C −17 D 31 Câu 24 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 + 2i B −3 − 2i C 11 + 2i D −3 − 10i Câu 25 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 + B −21008 C 21008 D −22016 Câu 26 Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A 12 B C D Câu 27 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A B C D Trang 2/5 Mã đề 001 Câu 28 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 D A B C R Câu 29 Cho dx = F(x) + C Khẳng định đúng? x 1 A F ′ (x) = B F ′ (x) = − C F ′ (x) = lnx D F ′ (x) = x x x 2 Câu 30 Trong không gian Oxyz, cho mặt cầu (S ) : x + y + z − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (1; 2; 3) B (−1; −2; −3) C (2; 4; 6) D (−2; −4; −6) Câu 31 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 16π 16 16π A B C D 15 9 15 R2 R2 Câu 32 Nếu f (x) = [ f (x) − 2] A B C D −2 Câu R33 Cho hàm số f (x) = cosx + x Khẳng định nàoRdưới đúng? A f (x) = −sinx + x2 + C B f (x) = sinx + x2 + C R R x2 x2 C f (x) = sinx + + C D f (x) = −sinx + + C 2 Câu 34 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ 97 85 B T = C T = 13 D T = A T = 13 3 z Câu 35 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ D A B C 2 Câu 36 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = B P = 2016 C P = −2016 D max T = + z + z2 Câu 37 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 3 A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 Câu 38 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 2 Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ A B C D √ 2 √ Câu 40 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | bằng√bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Trang 3/5 Mã đề 001 Câu 41 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = C P = 2016 D P = −2016 Câu 42 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a + 2b √ √ √ √ A B C 10 D 15 − −a = (−1; 1; 0), → −c = (1; 1; 1) Trong Câu 43 Trong không gian Oxyz, cho ba véctơ → b = (1; 1; 0), → mệnh đề sau, mệnh đề sai? √ √ → − − → − − −a = → − B → C b ⊥→ a D b ⊥→ c A c = Câu 44 Cho hàm số có bảng biến thiên: Khẳng định sau đúng? A Hàm số đạt cực đại B Hàm số đạt cực đại C Hàm số đạt cực đại D Hàm số đạt cực đại Câu 45 Với a số thực dương tùy ý, log5 (5a) A + log5 a B + log5 a C − log5 a D − log5 a Câu 46 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A (−∞; 3] B (0; 3] C [−3; 3] D (−∞; −3] ∪ [3; +∞) C y′ = 2023 x ln x D y′ = 2023 x ln 2023 Câu 47 Tính đạo hàm hàm số y = 2023 x A y′ = x.2023 x−1 B y′ = 2023 x Câu 48 Biết phương trình log22 x − 7log2 x + = có nghiệm x1 , x2 Giá trị x1 x2 A 64 B 128 C 512 D √ Câu 49 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: A (x − 4)2 + (y + 8)2 = 20 C (x + 4)2 + (y − 8)2 = 20 √ B (x − 4)2 + (y + 8)2 = √ D (x + 4)2 + (y − 8)2 = Câu 50 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(−1; 2; −3); R = B I(1; −2; 3); R = C I(1; 2; 3); R = D I(1; 2; −3); R = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001