Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng? A y = x3 − 2x[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = x2 − 2x + C y = x D y = −x4 + 3x2 − Câu Cho < a , 1; < x , Đẳng thức sau sai? A aloga x = x B loga x2 = 2loga x C loga2 x = loga x D loga (x − 2)2 = 2loga (x − 2) Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số nghịch biến (0; +∞) C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số nghịch biến R Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B 4πR3 C πR3 D πR3 √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành? 10π π C V = D V = A V = π B V = 3 √ ′ Câu 6.√Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA = 3a Thể tích khối lăng trụ cho là: √ A 3a3 B a3 C 3a3 D 3a3 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 5; 0) C (0; 1; 0) D (0; 0; 5) Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = tan x B y = x−1 C y = sin x D y = x3 − 2x2 + 3x + Câu Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A −7 B C −1 D x−2 y x−1 Câu 10 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : = = điểm −1 ′ A(2 ; ; 3) Toạ độ điểm A đối xứng với A qua đường thẳng d tương ứng 10 A (2 ; −3 ; 1) B ( ; − ; ) C ( ; − ; ) D ( ; − ; ) 3 3 3 3 Câu 11 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A J(−3; 2; 7) B H(−2; −1; 3) C I(−1; −2; 3) D K(3; 0; 15) Câu 12 Bất phương trình log2021 (x − 1) ≤ có nghiệm nguyên? A B 2022 C D Trang 1/5 Mã đề 001 1 Câu 13 Cho hàm số f (x) = − x3 + (2m + 3)x2 − (m2 + 3m)x + tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B C Có giá trị nguyên Câu 14 Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A 5x5 + sin x + C B 5x5 − sin x + C C x5 − sin x + C D 16 D x5 + sin x + C Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) qua tâm mặt cầu (S ) B (P) tiếp xúc mặt cầu (S ) C (P) không cắt mặt cầu (S ) D (P) cắt mặt cầu (S ) Câu 16 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (−1 ; 4) B (0 ; +∞) C (−2 ; 0) D (−∞ ; −2) 2(1 + 2i) = + 8i Mô-đun số phức w = z + i + Câu 17 Cho số phức z thỏa mãn (2 + i)z + 1+i A B C 13 D (1 + i)(2 + i) (1 − i)(2 − i) + Trong tất kết luận sau, kết Câu 18 Cho số phức z thỏa mãn z = 1−i 1+i luận đúng? A |z| = B z số ảo C z = D z = z z Câu 19 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −10 B 10 C −9 D Câu 20 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực C Mô-đun số phức z số thực dương B Mô-đun số phức z số thực không âm D Mô-đun số phức z số phức Câu 21 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? B z · z = a2 − b2 C |z2 | = |z|2 D z + z = 2bi A z − z = 2a − 2i (1 − i)(2 + i) + Câu 22 Phần thực số phức z = 2−i + 3i 11 29 29 11 A − B C − D 13 13 13 13 Câu 23 Cho hai √ số phức z1 = + i z2 = − 3i Tính mô-đun số phức z1 + z2 √ A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = 13 Câu 24 Đẳng thức đẳng thức sau? A (1 + i)2018 = 21009 B (1 + i)2018 = −21009 i C (1 + i)2018 = −21009 D (1 + i)2018 = 21009 i Câu 25 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 26 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (3; +∞) B (1; 3) C (−∞; 1) D (0; 2) Câu 27 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A B C D 2 Trang 2/5 Mã đề 001 Câu 28 Nếu A R4 −1 R4 R4 f (x) = −1 g(x) = −1 [ f (x) + g(x)] B −1 C D Câu 29 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 B C D A 35 35 35 Câu 30 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x=5+t x = + 2t x = + 2t x = + 2t y = + 2t y = + 3t y = −1 + t y = −1 + 3t A B C D z = + 3t z = −1 + t z = −1 + 3t z = −1 + t Câu 31 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n3 = (1; 1; 1) B → n2 = (1; −1; 1) C → n4 = (1; 1; −1) D → n1 = (−1; 1; 1) Câu 32 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = B d = R C d < R D d > R Câu 33 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C D −1 √ Câu 34 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A < |z| < B |z| > C |z| < D ≤ |z| ≤ 2 2 √ 2 Câu 35 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.√ 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 Câu 36 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 37 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A 13 B C D Câu 38 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 22016 B −22016 C −21008 D 21008 √ √ √ 42 √ Câu 39 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 z Câu 40 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ A B C D Trang 3/5 Mã đề 001 Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 4)2 C P = (|z| − 2)2 D P = |z|2 − Câu 42 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C 2 D Câu 43 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số nguyên dương m để diện tích hình phẳng (H) số nhỏ 20 A Câu 44 Biết B R3 f (x)dx = A R3 C g(x)dx = Khi B R3 D [ f (x) + g(x)]dx C D −2 Câu 45 Tìm nguyên hàm hàm số f (x) = cos 3x R R sin 3x A cos 3xdx = sin 3x + C B cos 3xdx = + C R R sin 3x + C D cos 3xdx = sin 3x + C C cos 3xdx = − √ Câu √ 46 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB) √ √ D d = a A d = a B d = 2a C d = a Câu 47 Với a số thực dương tùy ý, log5 (5a) A − log5 a B − log5 a C + log5 a D + log5 a x−1 y+2 z = = không qua điểm đây? −1 B (3; −1; −1) C A(−1; 2; 0) D (1; −2; 0) Câu 48 Đường thẳng (∆) : A (−1; −3; 1) Câu 49 Cho hình phẳng D giới hạn đường y = (x − 2)2 , y = 0, x = 0, x = Khối tròn xoay tạo thành quay D quạnh trục hồnh tích V bao nhiêu? 32 32 32π A V = 32π B V = C V = D V = 5π Câu 50 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 209 A B C D 210 105 21 210 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001