Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Biết F(x) là một nguyên hàm của hàm số f (x) = x cos2x và F( π 3 ) = π √[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 π π π x F( ) = √ Tìm F( ) cos x π π ln π π ln π π ln π π ln A F( ) = + B F( ) = + C F( ) = − D F( ) = − 4 4 4 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = x2 − 2x + C y = −x + 3x − D y = x3 − 2x2 + 3x + Câu Biết F(x) nguyên hàm hàm số f (x) = Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ a 5a 3a 2a A √ C D √ B 5 √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối tròn xoay tạo thành? 10π π D V = A V = π B V = C V = 3 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến (0; +∞) B Hàm số nghịch biến R C Hàm số đồng biến R D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(8; ; 19) B C(20; 15; 7) C C(6; 21; 21) D C(6; −17; 21) Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 → − Câu Trong không gian với hệ tọa√độ Oxyz cho u (2; −2; 1), kết luận sau đúng? −u | = −u | = −u | = −u | = A |→ B |→ C |→ D |→ R2 R2 Câu Cho hàm số f (x) liên tục R ( f (x) + 2x) = Tính f (x) 0 A −1 B C −9 D Câu 10 Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 50 B 60 C 40 D 30 − Câu 11 Đạo hàm hàm số y = (2x + 1) tập xác định 1 − − A 2(2x + 1) ln(2x + 1) B (2x + 1) ln(2x + 1) 4 − − C − (2x + 1) D − (2x + 1) 3 Trang 1/5 Mã đề 001 Câu 12 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 13 B 17 C 18 D 20 Câu 13 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −6 B −4 C −8 D −2 Câu 14 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 B P = C P = D P = A P = R 55 220 14 Câu 15 Biết f (x)dx = sin 3x + C Mệnh đề sau mệnh đề đúng? cos 3x cos 3x B f (x) = −3 cos 3x C f (x) = − D f (x) = cos 3x A f (x) = 3 − → Câu 16 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 90 B 45 C 60◦ D 30◦ Câu 17 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là3 phần ảo B Phần thực −3 phần ảo là−2 C Phần thực là−3 phần ảo −2i D Phần thực phần ảo 2i Câu 18 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? B z − z = 2a C z · z = a2 − b2 D |z2 | = |z|2 A z + z = 2bi Câu 19 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A B −10 C 10 D −9 Câu 20 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −7 B −3 C D Câu 21 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương C Mô-đun số phức z số thực B Mô-đun số phức z số thực không âm D Mô-đun số phức z số phức Câu 22 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 23 √ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi√đó mơ-đun số phức w = 6z − 25i B C D 13 A 29 z2 Câu 24 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A B 13 C 11 D 2(1 + 2i) Câu 25 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C D 13 Câu 26 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; 2) B (1; +∞) C (2; +∞) D (−∞; 1) Trang 2/5 Mã đề 001 Câu 27 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; −6) B (7; 6) C (6; 7) D (−6; 7) Câu 28 Cho khối chóp S ABC có đáy tam giác vuông cân A, AB = 2, S A vuông góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B 12 C D Câu 29 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (−1; −2; −3) B (−1; 2; 3) C (1; 2; −3) D (1; −2; 3) Câu 30 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (−∞; 1) B (1; 3) C (3; +∞) D (0; 2) Câu 31 Phần ảo số phức z = − 3i A −3 B −2 C D x − 16 x − 16 < log7 ? Câu 32 Có số nguyên x thỏa mãn log3 343 27 A 193 B 184 C 92 D 186 R4 R4 R4 Câu 33 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A −1 B C D Câu 34 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A |z| = B z số thực không dương C z số ảo D Phần thực z số âm Câu 35 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z √2 | √ √ B P = 26 C P = + D P = 34 + A P = Câu 36 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B 18 C D = Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B C √ D 2 Câu 38 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 21008 B −22016 C 22016 D −21008 2z − i Câu 39 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| > B |A| ≤ C |A| ≥ D |A| < Câu 40 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 15 B 10 C D Câu 41 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = |z|2 − C P = (|z| − 4)2 D P = (|z| − 2)2 Trang 3/5 Mã đề 001 Câu 43 Hình chópS ABC có đáy tam giác vng B có AB = a, AC = 2a, S A vng góc với mặt phẳng đáy, S A = 2a Gọi φ góc tạo hai mặt phẳng (S AC), (S BC) Tính cos φ =? √ √ √ 15 3 A B C D 5 Câu 44 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A −x + 2y + 2z + = B x − 2y − 2z − = C 3x − 4y + 6z + 34 = D x + 2y + 2z + = √ Câu 45 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ A (x + 4)2 + (y − 8)2 = C (x + 4)2 + (y − 8)2 = 20 √ B (x − 4)2 + (y + 8)2 = D (x − 4)2 + (y + 8)2 = 20 Câu 46 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (2; 3; −4) A → −n = (−2; 3; 4) B → −n = (2; −3; 4) C → −n = (−2; 3; 1) D → Câu 47 Đường cong hình bên đồ thị hàm số đây? A y = x3 − 3x2 + Câu 48 R B y = −x4 + 2x2 + C y = x4 − 2x2 + D y = −x3 + 3x2 + B x6 + C C 30x4 + C D x6 + C C 3i D 6x5 dxbằng A 6x6 + C Câu 49 Số phức z = − 3i có phần ảo A B −3 √ Câu 50 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB) √ √ A d = 2a B d = a C d = a D d = a Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001