Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến t[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > B m ≥ e−2 C m > 2e D m > e2 x tập xác định Câu Giá trị nhỏ hàm số y = x +1 1 A y = − B y = C y = D y = −1 R R R R 2 Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x + 3x có cực tiểu mà khơng có cực đại A m ≥ B m < C m > D m ≤ Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B 6πR3 C πR3 D 2πR3 Câu Hàm số sau đồng biến R? A y = tan √ √ x C y = x2 + x + − x2 − x + B y = x4 + 3x2 + D y = x2 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (−2; 0; 0) B (0; 6; 0) C (0; 2; 0) D (0; −2; 0) Câu R7 Công thức sai? A R cos x = sin x + C C sin x = − cos x + C Câu Tính I = R1 √3 R B R a x = a x ln a + C D e x = e x + C 7x + 1dx 45 21 60 20 B I = C I = D I = 28 28 ′ ′ ′ ′ Câu Cho hình lập phương ABCD.A B C D có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D √ d = 1200 Gọi Câu 10 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh √ phẳng (A1 BK) √ CC1 , BB1 Tính khoảng cách từ điểm I đến mặt √ a a a 15 A D B C a 15 Câu 11 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD và√có chiều cao chiều cao tứ diện √ tiếp √ 2 √ π 2.a π 3.a 2π 2.a A B C D π 3.a2 3 R Câu R12 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = 2F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = F(2x − 1) + C 2x + 2017 Câu 13 Cho hàm số y = (1) Mệnh đề đúng? x + A I = Trang 1/5 Mã đề 001 A Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 B Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng C Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng D Đồ thị hàm số (1) tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = Câu 14 Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab) = ln a ln b B ln(ab2 ) = ln a + ln b a ln a C ln( ) = D ln(ab2 ) = ln a + (ln b)2 b ln b Câu 15 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 4m2 − m2 − m2 − 12 m2 − 12 A B C D 2m 2m m 2m Câu 16 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu 17 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = C P = 2i D P = + i Câu 18 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B −3 C −7 D (1 + i)(2 + i) (1 − i)(2 − i) + Trong tất kết luận sau, kết Câu 19 Cho số phức z thỏa mãn z = 1−i 1+i luận đúng? A z số ảo B |z| = C z = z D z = z Câu 20.√Cho số phức z1 = + √ 2i, z2 = − i Giá trị của√biểu thức |z1 + z1 z2 | √ A 10 B 10 C 130 D 30 !2016 !2018 1+i 1−i Câu 21 Số phức z = + 1−i 1+i A B + i C D −2 Câu 22 Tìm số phức liên hợp số phức z = i(3i + 1) B z = + i C z = − i A z = −3 + i Câu 23 Tính mơ-đun số phức z thỏa mãn z(2 − i) + 13i√= √ 34 A |z| = 34 B |z| = 34 C |z| = (1 + i)(2 − i) Câu 24 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = Câu 25 Với số phức z, ta có |z + 1|2 A z · z + z + z + B |z|2 + 2|z| + C z2 + 2z + Câu 26 Tập nghiệm bất phương trình log4 (3 x − 1).log A S = (−∞; 1] ∪ [2; +∞) C S = (0; 1] ∪ [2; +∞) D z = −3 − i √ 34 D |z| = D |z| = D z + z + 3x − ≤ là: 16 4 B S = (1; 2) D S = [1; 2] Trang 2/5 Mã đề 001 x−3 y−6 z−1 = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: y−1 z−1 x y−1 z−1 x = = B = = A −1 −3 −3 x−1 y z−1 x y−1 z−1 C = = D = = −1 −3 −1 Câu 27 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : Câu 28 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 46.538667 đồng B 43.091.358 đồng C 45.188.656 đồng D 48.621.980 đồng Câu 29 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 20 5πa3 5 5 5π a B V = C V = πa D V = πa3 A V = 6 Câu 30 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (1; 1; 3) B (1; −2; −3) C (1; −1; 1) D (−1; 1; 1) m 3 Câu 31 Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − 2 có nghiệm phân biệt 19 A S = (−3; −1) ∪ (1; 2) B S = (−5; − ) ∪ ( ; 6) 4 19 19 C S = (−2; − ) ∪ ( ; 7) D S = (−2; − ) ∪ ( ; 6) 4 4 Câu 32 Đồ thị hàm số sau có điểm cực trị: A y = −x4 − 2x2 − B y = x4 + 2x2 − C y = 2x4 + 4x2 + D y = x4 − 2x2 − Câu 33 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (1; −2; 7) B (4; −6; 8) C (−2; 3; 5) D (−2; 2; 6) z Câu 34 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ A B C D 2 Câu 35 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu!diễn số phức thuộc tập hợp sau đây? ! ! ! 9 A 0; B ; C ; +∞ D ; 4 4 Câu 36 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ 97 85 A T = B T = C T = 13 D T = 13 3 √ 2 Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3√ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 Trang 3/5 Mã đề 001 Câu 38 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = + i C A = D A = −1 Câu 39 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i C |w|min = D |w|min = A |w|min = B |w|min = 2 Câu 40 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 Câu 41 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| √ A P = B P = −2016 C max T = D P = 2016 Câu 42 Cho số phức z , thỏa mãn A |z| = B |z| = z+1 số ảo Tìm |z| ? z−1 C |z| = D |z| = Câu 43 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 44 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (1; 5) C (−3; 0) D (−1; 1) Câu 45 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m > −2 B −4 ≤ m ≤ −1 C m < D −3 ≤ m ≤ Câu 46 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng B 36080254 đồng C 36080255 đồng D 36080251 đồng Câu 47 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 A B C D 10 Câu 48 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < −1 B m > C m > m < − D m < −2 Câu 49 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D 3x Câu 50 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = −2 C Không tồn m D m = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001