Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng? A y = x3 − 2x2 +[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = x3 − 2x2 + 3x + B y = tan x 3x + C y = D y = sin x x−1 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 3a a 5a 2a A B √ C √ D 5 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 600 B 300 C 360 D 450 Câu Kết đúng? R sin3 x + C A sin2 x cos x = − R C sin2 x cos x = −cos2 x sin x + C B Câu Hàm số sau khơng có cực trị? A y = x2 C y = x4 + 3x2 + B y = cos x D y = x3 − 6x2 + 12x − sin3 x + C R D sin2 x cos x = cos2 x sin x + C R sin2 x cos x = Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = − B y = +1− ln ln 5 ln ln x x C y = −1+ D y = + ln ln 5 ln Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B −6 C D Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(20; 15; 7) B C(8; ; 19) C C(6; 21; 21) D C(6; −17; 21) √ Câu Cho a > a , Giá trị alog a bằng? √ A B C D Câu 10 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh√huyền 2a Tính thể √ tích3 khối nón 4π 2.a π 2.a 2π.a3 π.a3 A B C D 3 3 √ x Câu 11 Tìm nghiệm phương trình x = ( 3) A x = B x = C x = D x = −1 Câu 12 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ −1 C m ≥ D m > Câu 13 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B C D − 6 Trang 1/5 Mã đề 001 Câu 14 Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −1 B f (−1) = −3 C f (−1) = D f (−1) = −5 √ Câu √ 15 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vng cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 600 B 300 C 1200 D 450 Câu 16 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 B [22; +∞) C ( ; +∞) D ( ; 2] [22; +∞) A [ ; 2] [22; +∞) 4 Câu 17 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z − z = 2a B |z2 | = |z|2 C z · z = a2 − b2 D z + z = 2bi z2 Câu 18 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A B 13 C D 11 Câu 19 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B P(−2; 3) C M(2; −3) D N(2; 3) Câu 20 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 21 Tìm số phức liên hợp số phức z = i(3i + 1) A z = − i B z = −3 + i C z = −3 − i D z = + i 2(1 + 2i) Câu 22 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B 13 C D Câu 23 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2ki B A = C A = 2k D A = Câu 24 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = 2i C P = D P = + i Câu 25 √ Cho số phức z1 = + 2i, √ z2 = − i Giá trị của√biểu thức |z1 + z1 z2 | √ A 10 B 10 C 130 D 30 Câu 26 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 A x3 + − 4x B x3 + − 4x + C 2x3 − 4x4 D x3 − x4 + 2x 4 1 + + + ta được: Câu 27 Rút gọn biểu thức M = loga x loga2 x logak x 4k(k + 1) k(k + 1) k(k + 1) k(k + 1) A M = B M = C M = D M = loga x 2loga x loga x 3loga x x −2x +3x+1 Câu 28 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) B Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) C Hàm số đồng biến khoảng (−∞; 1) (3; +∞) D Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) Trang 2/5 Mã đề 001 (2 ln x + 3)3 : Câu 29 Họ nguyên hàm hàm số f (x) = x ln x + (2 ln x + 3)4 (2 ln x + 3)4 A + C B + C C + C 8 D (2 ln x + 3)2 + C Câu 30 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung diện tích mặt đáy nhỏ nhất, S √ quanh 2 C 75dm2 D 125dm2 A 106, 25dm B 50 5dm Câu 31 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 45.188.656 đồng B 43.091.358 đồng C 46.538667 đồng D 48.621.980 đồng x2 + 2x là: Câu 32 Khoảng cách hai điểm cực trị đồ thị hàm số y = x−1 √ √ √ √ A 15 B C D −2 Câu 33 Cho hình chóp S.ABC có đáy ABC tam giác vng cân với BA = BC = a, S A = a vng góc với √ mặt phẳng đáy Tính cơsin góc hai mặt phẳng √ (SAC) (SBC) bằng? √ 2 B C D A 2 Câu 34 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = −1 C A = + i D A = √ Câu 35 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = √ Câu 36 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm N B điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm M D điểm Q Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2√ z2 z1 √ B C D √ A 2 Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 2)2 B P = |z|2 − C P = |z|2 − D P = (|z| − 4)2 Câu 39 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn của√biểu thức P = |z1 | + |z2 | √ √ √ A P = + B P = 34 + C P = 26 D P = Câu 40 Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A P = −2016 B max T = C P = D P = 2016 Trang 3/5 Mã đề 001 Câu 41 Cho số phức z thỏa mãn z số thực ω = biểu thức M = |z + − i| A B C √ z số thực Giá trị lớn + z2 √ D 2 Câu 42 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm S C điểm P D điểm Q Câu 43 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = (x − 2x)dx + (x2 − 2x)dx B C D 1 R3 R2 R3 R3 R3 |x2 − 2x|dx = (x2 − 2x)dx − R2 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = − R3 (x2 − 2x)dx |x2 − 2x|dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx d Câu 44 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B 2a C a D a √ Câu 45 Tính đạo hàm hàm số y = log4 x2 − 1 x x x B y′ = √ D y′ = A y′ = C y′ = (x − 1) ln 2(x − 1) ln (x − 1)log4 e x2 − ln Câu 46 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C D −3 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 47 Trong không gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (1; 13; 16) A 2→ B 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (3; 14; 16) C 2→ D 2→ Câu 48 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 A x dx =5 x + C B (2x + 1)2 dx = + C R R e2x C e2x dx = +C D sin xdx = cos x + C Câu 49 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 31π 33π A B C D 6π 5 Câu 50 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 15 a3 a3 15 A B C D 16 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001