Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình hộp ABCD A′B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuôn[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 60a3 B 20a3 C 30a3 D 100a3 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 0; 5) B (0; −5; 0) C (0; 5; 0) D (0; 1; 0) Câu Hàm số sau khơng có cực trị? A y = x2 C y = cos x B y = x3 − 6x2 + 12x − D y = x4 + 3x2 + Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ D m ≥ A m ∈ (0; 2) B m ∈ (−1; 2) C −1 < m < + 2x Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A < m , B m < C ∀m ∈ R D −4 < m < √ ′ Câu Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA = 3a Thể tích khối √ lăng trụ cho là: √ A a3 B 3a3 C 3a3 D 3a3 Câu Cho hìnhqchóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ a2 b2 − 3a2 3ab2 A VS ABC = B VS ABC = 12 √ 12 √ a2 3b2 − a2 3a2 b C VS ABC = D VS ABC = 12 12 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (2; −1; −2) C (−2; 1; 2) D (2; −1; 2) Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A π B 4π C 3π D 2π √ d = 1200 Gọi Câu 10 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ a a a 15 A B a 15 C D 3 R Câu 11 Tính nguyên hàm cos 3xdx 1 A − sin 3x + C B sin 3x + C C sin 3x + C D −3 sin 3x + C 3 Câu 12 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn Trang 1/5 Mã đề 001 A m = B m = −7 C m = D m = Câu 13 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 m2 − 4m2 − m2 − 12 A B C D 2m 2m 2m m Câu 14 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền 2a Tính thể tích khối nón √ √ π.a3 4π 2.a3 π 2.a3 2π.a3 B C D A 3 3 Câu 15 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = 52 C yCD = D yCD = −2 Câu 16 Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −1 B f (−1) = −3 C f (−1) = D f (−1) = −5 Câu 17 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −22016 C −21008 + D −21008 2(1 + 2i) Câu 18 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B 13 C D Câu 19 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z + z = 2bi B z − z = 2a C z · z = a2 − b2 D |z2 | = |z|2 Câu 20 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −3 B C D −7 + 2i + i2017 có tổng phần thực phần ảo Câu 21 Số phức z = 2−i A B C -1 D (1 + i)(2 − i) Câu 22 Mô-đun số phức z = √ √ + 3i A |z| = B |z| = C |z| = D |z| = Câu 23 √ Cho số phức z1 = +√2i, z2 = − i Giá trị biểu √ thức |z1 + z1 z2 | √ A 10 B 130 C 10 D 30 Câu 24 Cho hai √ số phức z1 = + i z2 = − 3i Tính mơ-đun số phức z1 + z2 √ B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = 13 A |z1 + z2 | = Câu 25 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C √ x− x+2 Câu 26 Đồ thị hàm số y = có tất tiệm cận? x2 − A B C (2 ln x + 3)3 Câu 27 Họ nguyên hàm hàm số f (x) = : x (2 ln x + 3)4 (2 ln x + 3)4 (2 ln x + 3)2 A + C B + C C + C 2 Câu 28 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D D D ln x + + C D Trang 2/5 Mã đề 001 1 + + + ta được: loga x loga2 x logak x k(k + 1) k(k + 1) B M = C M = 2loga x loga x Câu 29 Rút gọn biểu thức M = A M = 4k(k + 1) loga x D M = k(k + 1) 3loga x Câu 30 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (1; −2; 7) B (−2; 3; 5) C (−2; 2; 6) D (4; −6; 8) √ Câu 31 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích√khối chóp S ABC √ √ √ 2a3 a a3 A B C a3 D 3 Câu 32 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (1; −2; −3) B (1; 1; 3) C (−1; 1; 1) D (1; −1; 1) Câu 33 Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 A B C D 24 12 2z − i Câu 34 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| ≥ B |A| < C |A| > D |A| ≤ z Câu 35 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A B C D 2 Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ B P = + C P = 26 D P = 34 + A P = √ 2 Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ 2 2 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 Câu 38 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −21008 B 21008 C 22016 D −22016 Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2√ z2 z1 √ A B √ C D 2 = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu!diễn số phức thuộc tập hợp ! sau đây? ! ! 1 9 B ; C ; D ; +∞ A 0; 4 4 Câu 40 Cho số phức z thỏa mãn (3 − 4i)z − Trang 3/5 Mã đề 001 Câu 41 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = 1 C |z| = B |z| = D |z| = Câu 42 Cho số phức z , cho z số thực w = thức |z| bằng? + |z|2 √ C B A z số thực Tính giá trị biểu + z2 D Câu 43 Cho tứ diện DABC, tam giácABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 2 3 Câu 44 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ B 3a3 C 9a3 D 6a3 A 4a3 Câu 45 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ A B C D 2 √ Câu 46 Tính đạo hàm hàm số y = log4 x2 − A y′ = (x2 x − 1) ln B y′ = √ x2 − ln C y′ = 2(x2 x − 1) ln D y′ = (x2 x − 1)log4 e Câu 47 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C D −3 Câu 48 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (1; 5) C (−3; 0) D (−1; 1) Câu 49 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = 2loga e B P = ln a C P = D P = + 2(ln a)2 Câu 50 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = 2πRl + 2πR2 C S = πRl + πR2 D S = πRl + 2πR2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001