Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Kết quả nào đúng? A ∫ sin2 x cos x = −cos2x sin x +C B ∫ sin2 x cos x =[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu R1 Kết đúng? A sin2 x cos x = −cos2 x sin x + C R sin3 x C sin2 x cos x = + C sin2 x cos x = cos2 x sin x + C R sin3 x D sin2 x cos x = − + C B R Câu Cho hình chóp S ABCcó cạnh đáy a cạnh bên tích khối chóp là: q b Thể √ √ a2 b2 − 3a2 a2 3b2 − a2 A VS ABC = B VS ABC = 12 √ √ 212 3a b 3ab2 D VS ABC = C VS ABC = 12 12 Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 30a3 B 100a3 C 60a3 D 20a3 √ Câu Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA√′ = 3a Thể tích khối√lăng trụ cho là: D 3a3 A a3 B 3a3 C 3a3 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; 1; 2) B (2; −1; 2) C (2; −1; −2) D (−2; −1; 2) Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ bao nhiêu? √ B R = C R = 29 D R = A R = 21 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = − 4t B x = + ty = + 2tz = C x = + 2ty = + tz = D x = + 2ty = + tz = π π π x F( ) = √ Tìm F( ) Câu Biết F(x) nguyên hàm hàm số f (x) = cos x π π ln π π ln π π ln π π ln A F( ) = + B F( ) = + C F( ) = − D F( ) = − 4 4 4 Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 2 A 3(m ) B (m ) C (m ) D (m2 ) Câu 10 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32π 32 8π B V = C V = D V = A V = 5 Câu 11 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A −2 ≤ m ≤ B −2 < m < C < m < D m = Trang 1/5 Mã đề 001 Câu 12 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 0; 3) B A(0; 0; 3) C A(0; 2; 3) D A(1; 2; 0) Câu 13 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 4m2 − m2 − 12 m2 − 12 A B C D 2m 2m m 2m Câu 14 Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V B C D A ′ Câu 15 Cho hình trụ có hai đáy hai đường trịn (O; r) (O ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 = B = C = D = A V2 V2 V2 V2 √ sin 2x R bằng? Câu 16 Giá trị lớn hàm số y = ( π) √ A B π C D π 4(−3 + i) (3 − i)2 + Mô-đun số phức w = z − iz + Câu 17 Cho số phức z thỏa mãn z = −i √ √ √ √ − 2i A |w| = 48 B |w| = C |w| = D |w| = 85 Câu 18 Những số sau vừa số thực vừa số ảo? A B Khơng có số C C.Truehỉ có số D Chỉ có số z2 Câu 19 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 11 B C 13 D Câu 20 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B −3 C D −7 Câu 21 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A 10 B −10 C D −9 Câu 22 √ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi√đó mơ-đun số phức w = 6z − 25i A 29 B C D 13 Câu 23 2i, z2 = − i Giá trị √ biểu thức |z1 + z1 z2 | √ √ Cho số phức z1 = + √ A 130 B 10 C 30 D 10 Câu 24 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A 11 + 2i B −3 + 2i C −3 − 10i D −3 − 2i Câu 25 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z · z = a2 − b2 B z + z = 2bi C z − z = 2a D |z2 | = |z|2 Câu 26 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 13 3a 10 a 3a 13 A B C D 13 20 26 Trang 2/5 Mã đề 001 x −2x +3x+1 Câu 27 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) B Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) C Hàm số đồng biến khoảng (−∞; 1) (3; +∞) D Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) (2 ln x + 3)3 Câu 28 Họ nguyên hàm hàm số f (x) = : x 4 (2 ln x + 3) (2 ln x + 3) ln x + (2 ln x + 3)2 A + C B + C C + C D + C 8 Câu 29 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (4; −6; 8) B (−2; 3; 5) C (−2; 2; 6) D (1; −2; 7) x−3 y−6 z−1 = = Câu 30 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: y−1 z−1 x−1 y z−1 x = = B = = A −1 −1 −3 x y−1 z−1 x y−1 z−1 C = = D = = −1 −3 −3 1 Câu 31 Rút gọn biểu thức M = + + + ta được: loga x loga2 x logak x k(k + 1) k(k + 1) 4k(k + 1) k(k + 1) B M = C M = D M = A M = loga x 2loga x 3loga x loga x Câu 32 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số h √ √ √ √ π− 2π − 2π − 3 A B C D 12 12 x2 + 2x Câu 33 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A B C −2 D 15 √ √ √ 42 √ Câu 34 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 Câu 35 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = 2 Câu 36 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 Trang 3/5 Mã đề 001 √ A B √ C √ D Câu 38 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 + · · · + z2017 + z2017 Tính giá trị biểu thức P = z2017 2015 + z2016 A P = B P = 2016 C P = −2016 D P = Câu 39 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu!diễn số phức thuộc tập hợp sau đây? ! ! ! 1 9 A 0; B ; C ; D ; +∞ 4 4 Câu 40 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 15 B C 10 D z+1 Câu 41 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = 2z − i Mệnh đề sau đúng? Câu 42 Cho số phức z thỏa mãn |z| ≤ ĐặtA = + iz A |A| < B |A| ≤ C |A| > D |A| ≥ d Câu 43 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm √ cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng √ (ABC) A a B a C 2a D a Câu 44 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 45 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng MN S C √ cách hai đường thẳng √ √ 3a a 15 3a 30 3a A B C D 2 10 Câu 46 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080255 đồng B 36080254 đồng C 36080251 đồng D 36080253 đồng r 3x + Câu 47 Tìm tập xác định D hàm số y = log2 x−1 A D = (1; +∞) B D = (−∞; 0) C D = (−∞; −1] ∪ (1; +∞) D D = (−1; 4) Câu 48 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = 0.√ √ C R = 15 D R = A R = B R = 14 R ax + b 2x Câu 49 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D Câu 50 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = (x − 2x)dx − (x2 − 2x)dx 1 Trang 4/5 Mã đề 001 B R3 |x2 − 2x|dx = − C D R3 R2 (x2 − 2x)dx + (x2 − 2x)dx R2 R3 1 R3 R2 R3 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx + |x2 − 2x|dx (x2 − 2x)dx - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001