Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = ax + b cx + d có đồ thị như hình vẽ bên Kết luận nào sau[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 ax + b có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ac < B ab < C bc > D ad > √ Câu Cho lăng trụ ABC.A√′ B′C ′ có đáy a, AA′ = 3a Thể tích khối√lăng trụ cho là: A a3 B 3a3 C 3a3 D 3a3 Câu Cho hàm số y = Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(6; 21; 21) B C(20; 15; 7) C C(6; −17; 21) D C(8; ; 19) p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếux = y = −3 C Nếux > thìy < −15 D Nếu < x < y < −3 , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π B √ A D 3π C 3π 3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A ∀m ∈ R B m < C < m , D −4 < m < Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số nghịch biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số nghịch biến (0; +∞) Câu Tính I = R1 √3 + 2x x+1 7x + 1dx A I = 21 B I = 45 28 C I = 60 28 D I = 20 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 2 2 2 C (S ) : (x + 2) + (y + 1) + (z − 1) = D (S ) : (x − 2) + (y − 1) + (z + 1) = Câu 10 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A π B 3π C 4π D 2π Trang 1/5 Mã đề 001 √ Câu 11 Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a B a C D A 2 Câu 12 Tập nghiệm bất phương trình log (x − 1) ≥ là: A (1; 2] B (1; 2) C [2; +∞) D (−∞; 2] Câu 13 Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 √ sin 2x Câu 14 Giá trị lớn hàm số y = ( π) R bằng? √ A π B π C D Câu 15 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 B C − D A 6 Câu 16 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 m2 − m2 − 12 4m2 − B C D A 2m 2m 2m m Câu 17 Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi √ = 6z − 25i √ mơ-đun số phức w A 13 B C 29 D Câu 18 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z · z = a2 − b2 B z − z = 2a C z + z = 2bi D |z2 | = |z|2 Câu 19 Với số phức z, ta có |z + 1|2 A |z|2 + 2|z| + B z · z + z + z + C z2 + 2z + Câu 20 Những số sau vừa số thực vừa số ảo? A B Khơng có số C C.Truehỉ có số D z + z + D Chỉ có số 25 1 = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 B −17 C 17 D −31 Câu 21 Cho số phức z thỏa A 31 Câu 22 Tính mơ-đun số phức z√thỏa mãn z(2 − i) + 13i√= √ 34 34 B |z| = A |z| = 34 C |z| = 3 Câu 23 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D |z| = 34 D Câu 24 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = + i B P = C P = D P = 2i Câu 25 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực phần ảo 2i B Phần thực là3 phần ảo C Phần thực là−3 phần ảo −2i D Phần thực −3 phần ảo là−2 Trang 2/5 Mã đề 001 Câu 26 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: B loga x có nghĩa với ∀x ∈ R A loga xn = log x , (x > 0, n , 0) an C loga = a loga a = D loga (xy) = loga x.loga y 1 Câu 27 Rút gọn biểu thức M = + + + ta được: loga x loga2 x logak x k(k + 1) k(k + 1) k(k + 1) 4k(k + 1) B M = C M = D M = A M = loga x 2loga x 3loga x loga x Câu 28 Trong hệ tọa độ Oxyz, cho A(1; kính AB có phương trình √ 2; 3), B(−3; 0; 1) Mặt2 cầu đường 2 2 A (x + 1) + (y − 1) + (z − 2) = B (x + 1) + (y − 1) + (z − 2)2 = 24 2 C (x − 1) + (y + 1) + (z + 2) = D (x + 1)2 + (y − 1)2 + (z − 2)2 = Câu 29 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số √ h √ √ √ π− 2π − 2π − 3 A B C D 12 12 Câu 30 Họ nguyên hàm hàm số y = (x − 1)e x là: A xe x−1 + C B (x − 2)e x + C C xe x + C D (x − 1)e x + C Câu 31 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hoành độ nhỏ A S = (−∞; −4) ∪ (−1; +∞) B S = (−1; +∞) C S = [−1; +∞) D S = (−4; −1) 3x − ≤ là: Câu 32 Tập nghiệm bất phương trình log4 (3 x − 1).log 16 4 A S = (1; 2) B S = (−∞; 1] ∪ [2; +∞) C S = (0; 1] ∪ [2; +∞) D S = [1; 2] Câu 33 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung diện tích mặt đáy nhỏ nhất, S √ quanh 2 C 125dm2 D 106, 25dm2 A 75dm B 50 5dm 2z − i Câu 34 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| < B |A| ≤ C |A| > D |A| ≥ √ Câu 35 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 z Câu 36 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? 1√+ |z|2 1 A B C D 2 Câu 37 Gọi z1 ; z2 hai nghiệm phương trình z − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 22016 B −21008 C −22016 D 21008 Trang 3/5 Mã đề 001 Câu 38 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | Câu 39 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A |z| = B z số thực không dương C z số ảo D Phần thực z số âm Câu 40 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ B P = C P = D P = A P = 2 Câu 41 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ √ 97 85 B T = 13 C T = D T = A T = 13 3 Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 2)2 C P = (|z| − 4)2 D P = |z|2 − −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 43 Trong không gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (1; 14; 15) A 2→ B 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (3; 14; 16) C 2→ D 2→ 3x cắt đường thẳng y = x + m Câu 44 Tìm tất giá trị tham số mđể đồ thị hàm số y = x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = −2 B Không tồn m C m = D m = Câu 45 Hàm số hàm số sau đồng biến R 4x + A y = −x3 − x2 − 5x B y = x+2 C y = x3 + 3x2 + 6x − D y = x4 + 3x2 Câu 46 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = − (x2 − 2x)dx + (x2 − 2x)dx B C D R3 R2 |x2 − 2x|dx = (x2 − 2x)dx + R3 1 R3 R2 R3 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx |x2 − 2x|dx (x2 − 2x)dx x2 + mx + Câu 47 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = B Khơng có m C m = D m = −1 √ 2x − x2 + Câu 48 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 49 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−3; 0) B (−1; 1) C (1; 5) D (3; 5) Trang 4/5 Mã đề 001 Câu 50 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng B 36080255 đồng C 36080253 đồng D 36080251 đồng - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001