Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính tổng tất cả các nghiệm của phương trình 6 22x − 13 6x + 6 32x = 0 A[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính tổng tất nghiệm phương trình 6.2 − 13.6 + 6.3 = 13 A B C D −6 Câu Số nghiệm phương trình x + 5.3 x − = A B C D 2x x 2x Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ≥ B m ∈ (0; 2) C −1 < m < D m ∈ (−1; 2) Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 100a3 B 20a3 C 30a3 D 60a3 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ a 3a 2a 5a A √ B D C √ 5 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 600 B 360 C 300 D 450 Câu R7 Công thức sai? A R a x = a x ln a + C C sin x = − cos x + C R B R e x = e x + C D cos x = sin x + C Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > B m ≥ e−2 C m > 2e D m > e2 Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −1 B f (−1) = C f (−1) = −3 D f (−1) = −5 Câu 10 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32 8π 32π A V = B V = C V = D V = 5 x−1 y+2 z Câu 11 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − y − 2z = B (P) : x − y + 2z = C (P) : x + y + 2z = D (P) : x − 2y − = Câu 12 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; 2) B I(0; −1; 2) C I(0; 1; −2) D I(1; 1; 2) Câu 13 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = −7 B m = C m = D m = Trang 1/5 Mã đề 001 R5 dx Câu 14 Biết = ln T Giá trị T là: 2x − 1 √ A T = B T = 81 C T = D T = Câu 15 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) 1 B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 C (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = √ Câu 16 Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận ngang có tiệm cận đứng B Khơng có tiệm cận C Có tiệm cận ngang khơng có tiệm cận đứng D Có tiệm cận ngang tiệm cận đứng Câu 17 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A 11 + 2i B −3 − 2i C −3 + 2i D −3 − 10i Câu 18 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −9 B C −10 D 10 2017 + 2i + i có tổng phần thực phần ảo Câu 19 Số phức z = 2−i A -1 B C D z Câu 20 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z √ √ A B 11 C 13 D Câu 21 Với số phức z, ta có |z + 1|2 A z · z + z + z + B z2 + 2z + C |z|2 + 2|z| + D z + z + Câu 22 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −3 B C −7 D 2(1 + 2i) Câu 23 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C 13 D Câu 24 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z · z = a2 − b2 B z − z = 2a C z + z = 2bi D |z2 | = |z|2 (1 + i)2017 Câu 25 Số phức z = có phần thực phần ảo đơn vị? 21008 i 1008 A B C D Câu 26 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = (−1; +∞) B S = (−4; −1) C S = (−∞; −4) ∪ (−1; +∞) D S = [−1; +∞) n e R ln x Câu 27 Tính tích phân I = dx, (n > 1) x 1 1 A I = B I = C I = D I = n + n+1 n−1 n x3 Câu 28 Tìm tất giá trị tham số m để hàm số y = (m + 2) − (m + 2)x2 + (m − 8)x + m5 nghịch biến R A m ≤ B m ≤ −2 C m ≥ −8 D m < −3 Trang 2/5 Mã đề 001 Câu 29 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) A B C D 4 4 Câu 30 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 20 5πa3 5 5π a B V = πa C V = D V = πa A V = 6 Câu 31 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A −6 B C D Câu 32 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga (xy) = loga x.loga y B loga x có nghĩa với ∀x ∈ R n D loga = a loga a = C loga x = log x , (x > 0, n , 0) an x −2x +3x+1 Câu 33 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số đồng biến khoảng (−∞; 1) (3; +∞) B Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) C Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) D Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) Câu 34 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D √ √ √ 42 √ + 3i+ 15 Mệnh đề đúng? Câu 35 Cho số phức z thỏa mãn − 5i |z| = z A < |z| < B < |z| < C < |z| < D < |z| < 2 Câu 36 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 37 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = B P = 34 + C P = 26 D P = + Câu 38 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = −2016 B P = 2016 C P = D max T = z Câu 39 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A 2 B C D √ Câu 40 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A |z| < B |z| > C ≤ |z| ≤ D < |z| < 2 2 Câu 41 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 Câu 42 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | Trang 3/5 Mã đề 001 Câu 43 Trong khơng gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ B R = C R = 14 D R = A R = 15 Câu 44 Tìm tất giá trị tham số m để hàm số y = A Khơng có m B m = x2 + mx + đạt cực tiểu điểm x = x+1 C m = D m = −1 Câu 45 Cho tứ diện DABC, tam giácABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 2 3 Câu 46 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 47 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ B 6a3 C 4a3 D 3a3 A 9a3 Câu 48 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C −3 D Câu 49 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 + B y = x3 − 3x2 C y = −2x4 + 4x2 D y = −x4 + 2x2 Câu 50 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox A 6π B 32π C 33π D 31π Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001