Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Cho số phức z thỏa mãn z = (1 + i)(2 + i) 1 − i + (1 − i)([.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Cho số phức z thỏa mãn z = đúng? A z = z B z = z (1 + i)(2 + i) (1 − i)(2 − i) + Trong tất kết luận sau, kết luận 1−i 1+i C |z| = D z số ảo z2 Câu Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 13 B C 11 D Câu Cho hai số phức z1 = + i z2 = − 3i Tính mơ-đun √ √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 D |z1 + z2 | = Câu Tính √ mơ-đun số phức z√thỏa mãn z(2 − i) + 13i = √ 34 34 A |z| = B |z| = C |z| = 34 D |z| = 34 3 Câu Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 + B 21008 C −22016 D −21008 Câu √Cho số phức z1 = + 2i, √ z2 = − i Giá trị biểu √ thức |z1 + z1 z2 | √ A 10 B 10 C 30 D 130 Câu Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho B πrl C 2πrl D 32 πrl2 A 31 πr2 l Câu Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 = y−1 = 2 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) A B C 13 D 113 z−1 −3 Gọi (P) mặt Câu Có cặp số nguyên (x; y) thỏa mãn log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ? A 48 B 89 C 49 Câu 10 Cho số phức z = + 9i, phần thực số phức z2 A 36 B 85 C D 90 D −77 Câu 11 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (0; 1) B (−1; 2) C (1; 2) D (1; 0) Câu 12 Tích tất nghiệm phương trình ln2 x + ln x − = A e13 B −2 C −3 D e2 Câu 13 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx Trang 1/5 Mã đề 001 C R3 |x2 − 2x|dx = − D R3 R2 (x2 − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − R3 (x2 − 2x)dx Câu 14 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = + 2t x = − 2t x = + 2t x = −1 + 2t y = −2 − 3t y = −2 + 3t y = −2 + 3t y = + 3t A B C D z = − 5t z = + 5t z = − 5t z = −4 − 5t Câu 15 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 B 6a C 9a D 4a3 A 3a Câu 16 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc a Tính thể tích khối √ với mặt phẳng (ABC), √diện tích tam giác S BC3 √ √ chóp S ABC 3 a 15 a a 15 a 15 A B C D 16 Câu 17 Chọn mệnh đề mệnh đề sau: R R e2x (2x + 1)3 A e2x dx = +C B (2x + 1)2 dx = + C R R C x dx =5 x + C D sin xdx = cos x + C d Câu 18 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ cạnh BC, S A = S C √ B a C a D 2a A a √ Câu 19 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 20 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 √ √ mặt phẳng phức Khi độ dài MN B MN = C MN = D MN = A MN = Câu 21 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = 22 B r = C r = D r = 20 Câu 22 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 2π B π C 4π D 3π 1+i z Câu 23 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = ′ mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM 15 25 15 25 A S = B S = C S = D S = 4 2 Câu 24 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 4π B 2π C 3π D π z+i+1 Câu 25 Tìm tập hợp điểm M biểu diễn số phức z cho w = số ảo? z + z + 2i A Một đường tròn B Một đường thẳng C Một Elip D Một Parabol Câu 26 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = B max T = C max T = 10 D max T = Trang 2/5 Mã đề 001 Câu 27 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 A B √ C √ D √ 13 Câu 28 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x + y − = C x − y + = D x + y − = √ Câu 29 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = √ Câu 30 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 A ≤ |z| ≤ B < |z| < C |z| > D |z| < 2 2 Câu 31 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A 10 B C D 1+i z Câu 32 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 25 25 15 A S = B S = C S = D S = 4 Câu 33 Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu 34 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 2 A (m ) B 3(m ) C (m ) D (m ) √ Câu 35 Cho a > a , Giá trị alog a bằng? √ A B C D Câu 36 Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A −1 B π C D Câu 37 Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A ln + B − ln C − ln − D ln − 2 R Câu 38 Tính nguyên hàm cos 3xdx 1 A sin 3x + C B sin 3x + C C − sin 3x + C D −3 sin 3x + C 3 Câu 39 Hình đa diện có cạnh? Trang 3/5 Mã đề 001 A 18 B 21 C 12 D 15 2x − Trong khẳng định sau, khẳng định đúng? −x + A Hàm số đồng biến khoảng (−2; +∞) B Hàm số đồng biến khoảng (−2; 2) Câu 40 Cho hàm số y = C Hàm số đồng biến tập xác định D Hàm số đồng biến khoảng (2; +∞) Câu 41 Đồ thị hàm số y = −x3 + 3x2 − 3x + có điểm cực trị? A B C D Câu 42 Cho hàm số y = x3 − 3x2 − 9x − Trong khẳng định sau, khẳng định sai? A Giá trị cực tiểu hàm số B Hàm số có điểm cực đại điểm cực tiểu C Giá trị cực đại hàm số D Hàm số có hai điểm cực trị Câu 43 Cho hàm số y = f (x) liên tục R lim y = Trong khẳng định sau, khẳng định x→+∞ đúng? A Đường thẳng y = tiệm cận đứng đồ thị hàm số y = f (x) B Đường thẳng x = tiệm cận đứng đồ thị hàm số y = f (x) C Đường thẳng y = tiệm cận ngang đồ thị hàm số y = f (x) D Đường thẳng x = tiệm cận ngang đồ thị hàm số y = f (x) Câu 44 Cho hàm số y = x+1 có đồ thị (C) đường thẳng d có phương trình y = − x Tìm số giao x−1 điểm (C) d A B C D Câu 45 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Câu 46 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = π1 xπ−1 B y′ = πxπ C y′ = πxπ−1 D y′ = xπ−1 Câu 47 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: A y′ = x ln B y′ = 1x C y′ = − x ln1 D y′ = ln x Câu 48 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A 25 B 12 C 34 D 14 Câu 49 Tích tất nghiệm phương trình ln2 x + ln x − = A −2 B e2 C e3 D −3 Câu 50 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 2) B (−1; 2) C (1; 0) D (0; 1) Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001